Mostrar el registro sencillo del ítem
dc.contributor.author | Obaya, Rafael | |
dc.contributor.author | Longo, Iacopo Paolo | |
dc.contributor.author | Sanz Gil, Ana María | |
dc.date.accessioned | 2023-02-08T11:33:27Z | |
dc.date.available | 2023-02-08T11:33:27Z | |
dc.date.issued | 2023 | |
dc.identifier.citation | Discrete and Continuous Dynamical Systems, 2023 | es |
dc.identifier.issn | 1078-0947 | es |
dc.identifier.uri | https://uvadoc.uva.es/handle/10324/58580 | |
dc.description | Producción Científica | es |
dc.description.abstract | Systems of non-autonomous parabolic partial differential equations over a bounded domain with nonlinear term of Carathéodory type are considered. Appropriate topologies on sets of Lipschitz Carathéodory maps are defined in order to have a continuous dependence of the mild solutions with respect to the variation of both the nonlinear term and the initial conditions, under different assumptions on the bound-maps of the nonlinearities. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | American Institute of Mathematical Sciences | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.subject.classification | Carathéodory functions, non-autonomous Carathéodory parabolic PDEs, topologies of continuity, dependence of solutions to PDEs on nonlinear term and initial conditions | es |
dc.title | Topologies of continuity for Carathéodory parabolic PDEs from a dynamical perspective | es |
dc.type | info:eu-repo/semantics/article | es |
dc.identifier.doi | 10.3934/dcds.2023008 | es |
dc.relation.publisherversion | https://www.aimsciences.org//article/doi/10.3934/dcds.2023008 | es |
dc.identifier.publicationfirstpage | 0 | es |
dc.identifier.publicationissue | 0 | es |
dc.identifier.publicationlastpage | 0 | es |
dc.identifier.publicationtitle | Discrete and Continuous Dynamical Systems | es |
dc.identifier.publicationvolume | 0 | es |
dc.peerreviewed | SI | es |
dc.description.project | All authors were partly supported by MICIIN/FEDER under project RTI2018-096523-B-I00 and by the University of Valladolid under project PIP-TCESC-2020. I.P. Longo was also partly supported by the European Union’s Horizon 2020 research and innovation programme under the Marie Sk lodowska Curie grant agreement No 754462, by the European Union’s Horizon 2020 – Societal Challenges grant agreement No 820970 and by TUM International Graduate School of Science and Engineering (IGSSE) | es |
dc.identifier.essn | 1553-5231 | es |
dc.type.hasVersion | info:eu-repo/semantics/acceptedVersion | es |