• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UVaDOCCommunitiesBy Issue DateAuthorsSubjectsTitles

    My Account

    Login

    Statistics

    View Usage Statistics

    Share

    View Item 
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Informática (Arquitectura y Tecnología de Computadores, Ciencias de la Computación e Inteligencia ...)
    • DEP41 - Artículos de revista
    • View Item
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Informática (Arquitectura y Tecnología de Computadores, Ciencias de la Computación e Inteligencia ...)
    • DEP41 - Artículos de revista
    • View Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/59068

    Título
    Integrating PCA and structural model decomposition to improve fault monitoring and diagnosis with varying operation points
    Autor
    García Álvarez, DiegoAutoridad UVA Orcid
    Bregón Bregón, AníbalAutoridad UVA
    Pulido Junquera, José BelarminoAutoridad UVA Orcid
    Alonso González, Carlos JavierAutoridad UVA Orcid
    Año del Documento
    2023
    Editorial
    Elsevier
    Descripción
    Producción Científica
    Documento Fuente
    Engineering Applications of Artificial Intelligence, 2023, vol. 122, 106145
    Abstract
    Fast and efficient fault monitoring and diagnostics methods are essential for fault diagnosis and prognosis tasks in Health Monitoring Systems. These tasks are even more complicated when facing dynamic systems with multiple operation points. This article introduces a symbiotic solution for fault detection and isolation, based on the integration of two complementary techniques: Possible Conflicts (PCs), a model-based diagnosis technique from the Artificial Intelligence (AI) community, and Principal Component Analysis (PCA), a Multivariate Statistical Process Control (MSPC) technique. Our proposal improves the PCA-based fault detection in systems with multiple operation points and transient states and provides a straightforward fault isolation stage for PCA. At the same time, the proposal increases the robustness for fault detection using PCs through the application of PCA to the residual signals. PCA has the ability to filter out residual deviations caused by model uncertainties that can lead to a high number of false positives. The proposed method has been successfully tested in a real-world plant with accurate fault detection results. The plant has noisy sensors and a system model without the same accuracy at each operation point and transient states.
    Materias (normalizadas)
    inteligencia artificial
    Informática
    Materias Unesco
    1203.17 Informática
    Palabras Clave
    Multivariate Statistical Process Control
    Fault diagnosis
    Multiple Operation Points Systems
    Principal Component Analysis
    Control Estadístico de Procesos Multivariante
    Diagnóstico erroneo
    Sistemas de Puntos de Operación Múltiple
    Análisis de componentes principales
    ISSN
    0952-1976
    Revisión por pares
    SI
    DOI
    10.1016/j.engappai.2023.106145
    Patrocinador
    Ministerio de Ciencia e Innovación (PID2021-126659OB-I00)
    Version del Editor
    https://www.sciencedirect.com/science/article/pii/S0952197623003299
    Propietario de los Derechos
    © 2023 The Authors
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/59068
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Collections
    • DEP41 - Artículos de revista [108]
    Show full item record
    Files in this item
    Nombre:
    Integrating-PCA-and-structural-model .pdf
    Tamaño:
    1.095Mb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalExcept where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10