Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/59253
Título
Sensorless speed estimation for the diagnosis of induction motors via MCSA. Review and commercial devices analysis
Año del Documento
2021
Editorial
MDPI
Descripción
Producción Científica
Documento Fuente
Sensors, 2021, Vol. 21, Nº. 15, 5037
Zusammenfassung
Sensorless speed estimation has been extensively studied for its use in control schemes. Nevertheless, it is also a key step when applying Motor Current Signature Analysis to induction motor diagnosis: accurate speed estimation is vital to locate fault harmonics, and prevent false positives and false negatives, as shown at the beginning of the paper through a real industrial case. Unfortunately, existing sensorless speed estimation techniques either do not provide enough precision for this purpose or have limited applicability. Currently, this is preventing Industry 4.0 from having a precise and automatic system to monitor the motor condition. Despite its importance, there is no research published reviewing this topic. To fill this gap, this paper investigates, from both theoretical background and an industrial application perspective, the reasons behind these problems. Therefore, the families of sensorless speed estimation techniques, mainly conceived for sensorless control, are here reviewed and thoroughly analyzed from the perspective of their use for diagnosis. Moreover, the algorithms implemented in the two leading commercial diagnostic devices are analyzed using real examples from a database of industrial measurements belonging to 79 induction motors. The analysis and discussion through the paper are synthesized to summarize the lacks and weaknesses of the industry application of these methods, which helps to highlight the open problems, challenges and research prospects, showing the direction in which research efforts have to be made to solve this important problem.
Materias (normalizadas)
Electric motors, Induction
Motores de inducción
Motores
Industry 4.0
Industria - Tecnología
Materias Unesco
3306.03 Motores Eléctricos
Palabras Clave
Fault diagnosis
MCSA
Sensorless speed estimation
ISSN
1424-8220
Revisión por pares
SI
Patrocinador
Universidad Politécnica de Valencia y Ministerio de Ciencia, Innovación y Universidades (Proyecto FPU19/02698)
Version del Editor
Propietario de los Derechos
© 2021 The authors
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Dateien zu dieser Ressource
Tamaño:
3.663Mb
Formato:
Adobe PDF
Solange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: Atribución 4.0 Internacional