Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/59564
Título
Bispectral analysis of heart rate variability to characterize and help diagnose pediatric sleep apnea
Autor
Año del Documento
2021
Editorial
MDPI
Descripción
Producción Científica
Documento Fuente
Entropy, 2021, Vol. 23, Nº. 8, 1016
Abstract
Pediatric obstructive sleep apnea (OSA) is a breathing disorder that alters heart rate variability (HRV) dynamics during sleep. HRV in children is commonly assessed through conventional spectral analysis. However, bispectral analysis provides both linearity and stationarity information and has not been applied to the assessment of HRV in pediatric OSA. Here, this work aimed to assess HRV using bispectral analysis in children with OSA for signal characterization and diagnostic purposes in two large pediatric databases (0–13 years). The first database (training set) was composed of 981 overnight ECG recordings obtained during polysomnography. The second database (test set) was a subset of the Childhood Adenotonsillectomy Trial database (757 children). We characterized three bispectral regions based on the classic HRV frequency ranges (very low frequency: 0–0.04 Hz; low frequency: 0.04–0.15 Hz; and high frequency: 0.15–0.40 Hz), as well as three OSA-specific frequency ranges obtained in recent studies (BW1: 0.001–0.005 Hz; BW2: 0.028–0.074 Hz; BWRes: a subject-adaptive respiratory region). In each region, up to 14 bispectral features were computed. The fast correlation-based filter was applied to the features obtained from the classic and OSA-specific regions, showing complementary information regarding OSA alterations in HRV. This information was then used to train multi-layer perceptron (MLP) neural networks aimed at automatically detecting pediatric OSA using three clinically defined severity classifiers. Both classic and OSA-specific MLP models showed high and similar accuracy (Acc) and areas under the receiver operating characteristic curve (AUCs) for moderate (classic regions: Acc = 81.0%, AUC = 0.774; OSA-specific regions: Acc = 81.0%, AUC = 0.791) and severe (classic regions: Acc = 91.7%, AUC = 0.847; OSA-specific regions: Acc = 89.3%, AUC = 0.841) OSA levels. Thus, the current findings highlight the usefulness of bispectral analysis on HRV to characterize and diagnose pediatric OSA.
Materias (normalizadas)
Pediatrics
Sleep apnea syndromes
Ritmo cardíaco - Trastornos
Neural networks (Computer science)
Materias Unesco
3201.10 Pediatría
3205.01 Cardiología
Palabras Clave
Heart rate variability
Bispectral analysis
Perceptron neural network
ISSN
1099-4300
Revisión por pares
SI
Patrocinador
Ministerio de Ciencia, Innovación y Universidades-Agencia Estatal de Investigación y Fondo Europeo de Desarrollo Regional (FEDER) - (Projects DPI2017-84280-R and RTC-2017-6516-1)
Comisión Europea y Fondo Europeo de Desarrollo Regional (FEDER) - (Cooperation Programme Interreg V-A Spain-Portugal POCTEP 2014–20200)
Ministerio de Ciencia, Innovación y Universidades - (PRE2018- 085219)
Ministerio de Ciencia e Innovación-Agencia Estatal de Investigación - (grant RYC2019-028566-I)
Institutos Nacionales de la Salud (NIH) y Universidad de Missouri - (grants HL130984, HL140548, and AG061824)
National Institutes of Health - (HL083075, HL083129, UL1-RR-024134, UL1 RR024989)
National Heart, Lung, and Blood Institute - (R24 HL114473, 75N92019R002)
Comisión Europea y Fondo Europeo de Desarrollo Regional (FEDER) - (Cooperation Programme Interreg V-A Spain-Portugal POCTEP 2014–20200)
Ministerio de Ciencia, Innovación y Universidades - (PRE2018- 085219)
Ministerio de Ciencia e Innovación-Agencia Estatal de Investigación - (grant RYC2019-028566-I)
Institutos Nacionales de la Salud (NIH) y Universidad de Missouri - (grants HL130984, HL140548, and AG061824)
National Institutes of Health - (HL083075, HL083129, UL1-RR-024134, UL1 RR024989)
National Heart, Lung, and Blood Institute - (R24 HL114473, 75N92019R002)
Nota
Se añade anexo con la corrección de la tabla nº 4 que se halla en la página 14 en la versión original del artículo. La corrección está en el segundo fichero "Erratum: Martín-Montero et al. Bispectral Analysis of Heart
Rate Variability to Characterize and Help Diagnose Pediatric Sleep Apnea".
Version del Editor
Propietario de los Derechos
© 2021 The authors
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Collections
Files in this item
Except where otherwise noted, this item's license is described as Atribución 4.0 Internacional