dc.contributor.author | Teixeira, Guilherme G. | |
dc.contributor.author | Peres, António M. | |
dc.contributor.author | Estevinho, Letícia | |
dc.contributor.author | Geraldes, Pedro | |
dc.contributor.author | García Cabezón, Ana Cristina | |
dc.contributor.author | Martín Pedrosa, Fernando | |
dc.contributor.author | Rodríguez Méndez, María Luz | |
dc.contributor.author | Dias, Luís G. | |
dc.date.accessioned | 2023-05-26T07:54:44Z | |
dc.date.available | 2023-05-26T07:54:44Z | |
dc.date.issued | 2022 | |
dc.identifier.citation | Chemosensors, 2022, Vol. 10, Nº. 7, 261 | es |
dc.identifier.issn | 2227-9040 | es |
dc.identifier.uri | https://uvadoc.uva.es/handle/10324/59698 | |
dc.description | Producción Científica | es |
dc.description.abstract | A lab-made electronic nose (Enose) with vacuum sampling and a sensor array, comprising nine metal oxide semiconductor Figaro gas sensors, was tested for the quantitative analysis of vapor–liquid equilibrium, described by Henry’s law, of aqueous solutions of organic compounds: three alcohols (i.e., methanol, ethanol, and propanol) or three chemical compounds with different functional groups (i.e., acetaldehyde, ethanol, and ethyl acetate). These solutions followed a fractional factorial design to guarantee orthogonal concentrations. Acceptable predictive ridge regression models were obtained for training, with RSEs lower than 7.9, R2 values greater than 0.95, slopes varying between 0.84 and 1.00, and intercept values close to the theoretical value of zero. Similar results were obtained for the test data set: RSEs lower than 8.0, R2 values greater than 0.96, slopes varying between 0.72 and 1.10, and some intercepts equal to the theoretical value of zero. In addition, the total mass of the organic compounds of each aqueous solution could be predicted, pointing out that the sensors measured mainly the global contents of the vapor phases. The satisfactory quantitative results allowed to conclude that the Enose could be a useful tool for the analysis of volatiles from aqueous solutions containing organic compounds for which Henry’s law is applicable. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | MDPI | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | Electronics - Dectectors | es |
dc.subject | Electrónica - Sensores | es |
dc.subject.classification | Electronic nose | es |
dc.subject.classification | Nariz electrónica | es |
dc.subject.classification | MOS sensor array | es |
dc.subject.classification | Conjunto de sensores MOS | es |
dc.subject.classification | Quantitative analysis | es |
dc.subject.classification | Análisis cuantitativo | es |
dc.subject.classification | Ridge regression | es |
dc.subject.classification | Regresión de cresta | es |
dc.title | Enose lab made with vacuum sampling: Quantitative applications | es |
dc.type | info:eu-repo/semantics/article | es |
dc.rights.holder | © 2022 The Authors | es |
dc.identifier.doi | 10.3390/chemosensors10070261 | es |
dc.relation.publisherversion | https://www.mdpi.com/2227-9040/10/7/261 | es |
dc.identifier.publicationfirstpage | 261 | es |
dc.identifier.publicationissue | 7 | es |
dc.identifier.publicationtitle | Chemosensors | es |
dc.identifier.publicationvolume | 10 | es |
dc.peerreviewed | SI | es |
dc.description.project | Fundación para la Ciencia y la Tecnología (FCT, Portugal) y Fondo Europeo de Desarrollo Regional (FEDER) under Programme PT2020 - (grants UID/AGR/00690/2019 y LA/P/0007/2020) | es |
dc.identifier.essn | 2227-9040 | es |
dc.rights | Atribución 4.0 Internacional | * |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es |
dc.subject.unesco | 2203 Electrónica | es |
dc.subject.unesco | 3312 Tecnología de Materiales | es |
Files in this item
This item appears in the following Collection(s)
Except where otherwise noted, this item's license is described as Atribución 4.0 Internacional