Mostrar el registro sencillo del ítem

dc.contributor.authorJojoa Acosta, Mario
dc.contributor.authorCastillo Sánchez, Gema Anabel
dc.contributor.authorGarcia Zapirain, Begonya
dc.contributor.authorTorre Díez, Isabel de la 
dc.contributor.authorFranco Martín, Manuel Ángel
dc.date.accessioned2023-06-12T07:53:17Z
dc.date.available2023-06-12T07:53:17Z
dc.date.issued2021
dc.identifier.citationInternational Journal of Environmental Research and Public Health, 2021, Vol. 18, Nº. 12, 6408es
dc.identifier.issn1660-4601es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/59811
dc.descriptionProducción Científicaes
dc.description.abstractThe use of artificial intelligence in health care has grown quickly. In this sense, we present our work related to the application of Natural Language Processing techniques, as a tool to analyze the sentiment perception of users who answered two questions from the CSQ-8 questionnaires with raw Spanish free-text. Their responses are related to mindfulness, which is a novel technique used to control stress and anxiety caused by different factors in daily life. As such, we proposed an online course where this method was applied in order to improve the quality of life of health care professionals in COVID 19 pandemic times. We also carried out an evaluation of the satisfaction level of the participants involved, with a view to establishing strategies to improve future experiences. To automatically perform this task, we used Natural Language Processing (NLP) models such as swivel embedding, neural networks, and transfer learning, so as to classify the inputs into the following three categories: negative, neutral, and positive. Due to the limited amount of data available—86 registers for the first and 68 for the second—transfer learning techniques were required. The length of the text had no limit from the user’s standpoint, and our approach attained a maximum accuracy of 93.02% and 90.53%, respectively, based on ground truth labeled by three experts. Finally, we proposed a complementary analysis, using computer graphic text representation based on word frequency, to help researchers identify relevant information about the opinions with an objective approach to sentiment. The main conclusion drawn from this work is that the application of NLP techniques in small amounts of data using transfer learning is able to obtain enough accuracy in sentiment analysis and text classification stages.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherMDPIes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectMindfulnesses
dc.subjectMeditaciónes
dc.subjectStresses
dc.subjectEstréses
dc.subjectCOVID-19es
dc.subjectNatural Language Processing (NLP)es
dc.subjectProcesamiento en lenguaje natural (Informática)es
dc.subjectDeep learning (Machine learning)es
dc.subjectNeural networks (Computer science)es
dc.subjectRedes neuronales (Informática)es
dc.titleSentiment analysis techniques applied to raw-text data from a Csq-8 questionnaire about mindfulness in times of COVID-19 to Improve strategy generationes
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2021 The authorses
dc.identifier.doi10.3390/ijerph18126408es
dc.relation.publisherversionhttps://www.mdpi.com/1660-4601/18/12/6408es
dc.identifier.publicationfirstpage6408es
dc.identifier.publicationissue12es
dc.identifier.publicationtitleInternational Journal of Environmental Research and Public Healthes
dc.identifier.publicationvolume18es
dc.peerreviewedSIes
dc.description.projectJunta de Castilla y León, Gerencia Regional de Salud - (grant GRS COVID 90/A/20)es
dc.identifier.essn1660-4601es
dc.rightsAtribución 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco33 Ciencias Tecnológicases
dc.subject.unesco32 Ciencias Médicases


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem