Mostrar el registro sencillo del ítem

dc.contributor.authorDíaz Pernas, Francisco Javier 
dc.contributor.authorMartínez Zarzuela, Mario 
dc.contributor.authorAntón Rodríguez, Miriam 
dc.contributor.authorGonzález Ortega, David 
dc.date.accessioned2023-06-21T12:23:35Z
dc.date.available2023-06-21T12:23:35Z
dc.date.issued2021
dc.identifier.citationHealthcare, 2021, Vol. 9, Nº. 2, 153es
dc.identifier.issn2227-9032es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/59926
dc.descriptionProducción Científicaes
dc.description.abstractIn this paper, we present a fully automatic brain tumor segmentation and classification model using a Deep Convolutional Neural Network that includes a multiscale approach. One of the differences of our proposal with respect to previous works is that input images are processed in three spatial scales along different processing pathways. This mechanism is inspired in the inherent operation of the Human Visual System. The proposed neural model can analyze MRI images containing three types of tumors: meningioma, glioma, and pituitary tumor, over sagittal, coronal, and axial views and does not need preprocessing of input images to remove skull or vertebral column parts in advance. The performance of our method on a publicly available MRI image dataset of 3064 slices from 233 patients is compared with previously classical machine learning and deep learning published methods. In the comparison, our method remarkably obtained a tumor classification accuracy of 0.973, higher than the other approaches using the same databasees
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherMDPIes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectBrain - Tumors - Diagnosises
dc.subjectTumors cerebralses
dc.subjectCerebro - Tumoreses
dc.subjectNeurologyes
dc.subjectMachine learninges
dc.subjectArtificial intelligencees
dc.subjectNeural networks (Computer science)es
dc.subjectRedes neuronales (Informática)es
dc.subjectSignal processinges
dc.subjectStatisticses
dc.subjectEstadísticaes
dc.subjectMagnetic resonancees
dc.subjectResonancia Magnéticaes
dc.titleA deep learning approach for brain tumor classification and segmentation using a multiscale convolutional neural networkes
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2021 The authorses
dc.identifier.doi10.3390/healthcare9020153es
dc.relation.publisherversionhttps://www.mdpi.com/2227-9032/9/2/153es
dc.identifier.publicationfirstpage153es
dc.identifier.publicationissue2es
dc.identifier.publicationtitleHealthcarees
dc.identifier.publicationvolume9es
dc.peerreviewedSIes
dc.identifier.essn2227-9032es
dc.rightsAtribución 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco3205.07 Neurologíaes
dc.subject.unesco1209.03 Análisis de Datoses


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem