• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Navegar

    Todo o repositórioComunidadesPor data do documentoAutoresAssuntosTítulos

    Minha conta

    Entrar

    Estatística

    Ver as estatísticas de uso

    Compartir

    Ver item 
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Escuela de Doctorado (ESDUVa)
    • Tesis doctorales UVa
    • Ver item
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Escuela de Doctorado (ESDUVa)
    • Tesis doctorales UVa
    • Ver item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/60280

    Título
    Open tools for dendrochronology. Advances in sample digitization and deep learning methods for image segmentation
    Autor
    García Hidalgo, MiguelAutoridad UVA Orcid
    Director o Tutor
    Olano Mendoza, José MiguelAutoridad UVA
    Rozas Ortiz, Vicente FernandoAutoridad UVA
    García Pedrero, Ángel MarioAutoridad UVA
    Editor
    Universidad de Valladolid. Escuela de DoctoradoAutoridad UVA
    Año del Documento
    2022
    Titulación
    Doctorado en Conservación y Uso Sostenible de Sistemas Forestales
    Resumo
    Dendrochronological techniques are paramount in forest research. The current climate change scenario and the central role of forests in biogeophysical cycles enforce the importance of novel techniques to get accurate data from trees and their relationship with the environment in faster ways. Recent technological advances and the place of open source software and hardware are making free, user-developed tools for forest research available to the research community. The aim of this Ph.D. thesis is the development of tools for image acquisition and data collection in dendrochronology based on open source software and hardware. Thus, four different tools for dendrochronological research are presented in five different chapters. The first chapter focuses on the development of a do-it-yourself tool based on open source hardware for image acquisition and wood sample digitization at high resolution. We used open hardware equipment from Arduino and Python programming to develop CaptuRING and published the entire free open source tool as: "CaptuRING: A Do-It-Yourself tool for wood sample digitization" in Methods in Ecology and Evolution, 2022; 13:1185-1191. Furthermore, the original software was registered in the Registro General de Propiedad Intelectual (00/2022/737) of Ministerio de Cultura y Deporte (Spain). The second chapter presents "How to build and install your own CaptuRING". This contribution presents a series of videos with a step-by-step guide to promote the use of CaptuRING in the research community. The manuscript and related videos have been submitted for publication. The third chapter describes ρ-MtreeRing. This free and open-source software, which is written in R, analyzes X-ray films from dendrochronological samples to get microdensity values automatically segmented through a graphical user interface. The open source tool and manuscript are published as: "ρ-MtreeRing. A graphical user interface for X-ray microdensity analysis" in Forests. 2021; 12(10):1405. The fourth chapter describes the potential of deep learning methods to automatically segment xylem vessels. We trained three different convolutional neural networks to segment vessels in stained wood microsections using the Keras framework in Python. Our results demonstrate the potential of these techniques to automatically segment xylem vessels and overcome derived problems from image illumination, which hamper segmentation using classical image segmentation methods. The manuscript is published as "Convolutional neural networks for segmenting xylem vessels in stained cross-sectional images" in: Neural Computing & Applications, 2020; 32:17927-17939. The fifth chapter develops an algorithm to delineate annual ring limits in stained wood microsections of a species with diffuse porous wood using convolutional neural networks. We used Python for image processing and the Keras framework for the algorithm training. The results show the ability of this techniques to obtain accurate tree ring segmentation for quantitative wood anatomy, reaching similar or even outperforming conventional manual delimitation in most of the evaluated cases. The results of this chapter will be presented in the manuscript "Deep Learning for ring bordering in stained cross-sectional images". This PhD Thesis presents four open source tools to get accurate information from wood features to unveil how trees respond to the environment. From digitization at macroscopic perspective, automatic data collection and the development of feature segmentation on microscopic samples. The presented four novel dendrochronological tools based on open source software facilitates forest research in the current climate change scenario.
     
    Las técnicas dendrocronológicas son fundamentales en la investigación forestal. El escenario actual de cambio climático y el papel central de los bosques en los ciclos biogeofísicos subrayan la necesidad de nuevas técnicas para obtener de un modo ágil datos precisos de los árboles y de su relación con el medio ambiente. Los recientes avances tecnológicos, además de la disponibilidad actual del software y el hardware de código abierto están poniendo a disposición de la comunidad investigadora herramientas gratuitas desarrolladas por los usuarios para la investigación forestal. El objetivo de esta tesis doctoral es el desarrollo de herramientas para la adquisición de imágenes y la recogida de datos basadas en software y hardware de código abierto para el estudio dendrocronológico. Esta tesis presenta cuatro herramientas diferentes para esta rama científica en cinco capítulos diferentes. El primer capítulo se centra en el desarrollo de una herramienta "hágalo usted mismo" basada en hardware de código abierto para la adquisición de imágenes y la digitalización de muestras de madera a alta resolución. Usamos equipos de hardware abierto de Arduino y programación de Python para desarrollar CaptuRING y publicamos la herramienta completa de código abierto como: "CaptuRING: A Do-It-Yourself tool for wood sample digitization" en Methods in Ecology and Evolution, 2022; 13:1185-1191. Además, el software original fue registrado en el Registro General de Propiedad Intelectual (00/2022/737) del Ministerio de Cultura y Deporte (España). El segundo capítulo presenta "Cómo construir e instalar su propio CaptuRING" ("How to build and install your own CaptuRING"). Esta contribución presenta una serie de vídeos con una guía paso a paso para promover el uso de CaptuRING en la comunidad investigadora. El manuscrito y los vídeos relacionados se han enviado para su publicación. El tercer capítulo describe ρ-MtreeRing. Este software gratuito y de código abierto, que está escrito en R, analiza imágenes de rayos X de muestras dendrocronológicas para obtener valores de microdensidad automáticamente segmentados a través de una sencilla interfaz gráfica de usuario. La herramienta de código abierto y el manuscrito se publicaron como: "ρ-MtreeRing. A graphical user interface for X-ray microdensity analysis" en Forests. 2021; 12(10):1405. El cuarto capítulo describe el potencial de los métodos de aprendizaje profundo para segmentar automáticamente los vasos del xilema. Entrenamos tres redes neuronales convolucionales diferentes para segmentar vasos en cortes histológicos de madera utilizando el marco Keras en Python. Nuestros resultados demuestran el potencial de estas técnicas para segmentar automáticamente los vasos del xilema y superar los problemas derivados de la iluminación de la imagen, que dificultan la labor de métodos clásicos de segmentación de imágenes. El manuscrito se publicó como "Convolutional neural networks for segmenting xylem vessels in stained cross-sectional images" en: Neural Computing & Applications. 2020; 32:17927-17939. El quinto capítulo desarrolla un algoritmo para delinear los límites anuales de los anillos en cortes histológicos de una especie con madera difuso-porosa utilizando redes neuronales convolucionales. Se utilizó Python para el procesamiento de imágenes y el marco Keras para el entrenamiento del algoritmo. Los resultados muestran la capacidad de estas técnicas para obtener una segmentación precisa de los anillos de los árboles para la anatomía cuantitativa de la madera alcanzando, en la mayoría de los casos evaluados, un rendimiento similar o incluso superior a la delimitación manual convencional. Los resultados de este capítulo se presentarán en el manuscrito "Deep Learning for ring bordering in stained cross-sectional images". Esta Tesis Doctoral presenta cuatro herramientas de código abierto para obtener información precisa de las características de la madera investigar cómo los árboles responden al entorno facilitando la investigación en el actual escenario de cambio climático.
    Materias (normalizadas)
    Bosques y Silvicultura
    Dendrocronología
    Wood Science & Technology
    Materias Unesco
    2417.03 Botánica General
    Palabras Clave
    Dendrochronology
    Dendrocronología
    Image
    Imagen
    Forestry research
    Investigación forestal
    Departamento
    Escuela de Doctorado
    DOI
    10.35376/10324/60280
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/60280
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • Tesis doctorales UVa [2405]
    Mostrar registro completo
    Arquivos deste item
    Nombre:
    TESIS-2144-230714.pdf
    Tamaño:
    3.811Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternationalExceto quando indicado o contrário, a licença deste item é descrito como Attribution-NonCommercial-NoDerivatives 4.0 International

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10