Mostrar el registro sencillo del ítem

dc.contributor.authorCabria Álvaro, Iván 
dc.date.accessioned2023-07-19T11:18:22Z
dc.date.available2023-07-19T11:18:22Z
dc.date.issued2023
dc.identifier.citationInternational Journal of Hydrogen Energy, 2024 vol. 50, Part D, p. 160-177es
dc.identifier.issn0360-3199es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/60426
dc.descriptionProducción Científicaes
dc.description.abstractHydrogen Fuel Cell Electric Vehicles (HFCEVs) and Natural Gas Vehicles (NGVs) are cleaner alternatives to present oil-based vehicles. The main problem of these technologies is the on-board storage. Metal-organic frameworks (MOFs) is one of the main groups of solid porous materials that can be used to store hydrogen or methane on-board these vehicles at room temperature and low or moderate pressures. The synthesis of these materials is usually expensive. Recently a group of eleven new BUT MOFs (BUT: Beijing University of Technology) has been synthesized using cheap organic precursors. Grand Canonical Monte Carlo simulations (GCMC) of the hydrogen and methane storage capacities and isosteric heats of these BUTs have been carried out and analyzed at 298.15 K and at pressures in the range 0.5–50 MPa. The correlations between the storage capacities and the porosity, the density, the pore size and the isosteric heat of the MOFs are analyzed. According to the simulations, three of the newly developed BUTs demonstrated high storage capacities for both hydrogen and methane. BUT-104 and 105 exhibited useable hydrogen volumetric and gravimetric capacities of approximately 0.023–0.027 kg/L and 4 wt % at 50 MPa. Additionally, they showcased useable methane volumetric and gravimetric capacities of 0.16–0.21 kg/L and 25 wt % at 25–35 MPa. Moreover, BUT-107 achieved the U.S. Department of Energy (DOE) hydrogen target for 2025, with a useable hydrogen gravimetric capacity of 5.5 wt % at 27 MPa. Furthermore, BUT-107 met the corresponding DOE methane targets, with useable methane volumetric and gravimetric capacities of 0.25 kg/L and 33.33 wt % at 50 MPa.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherElsevieres
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectFísicaes
dc.subjectGas (Combustible)es
dc.subject.classificationHydrogen storagees
dc.subject.classificationMethane storagees
dc.subject.classificationMetal-organic frameworkses
dc.subject.classificationAlmacenamiento de hidrógenoes
dc.subject.classificationAlmacenamiento de metanoes
dc.subject.classificationEstructuras metalorgánicases
dc.titleGrand canonical Monte Carlo simulations of the hydrogen and methane storage capacities of novel but MOFs at room temperaturees
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2023 The Authorses
dc.identifier.doi10.1016/j.ijhydene.2023.06.298es
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0360319923032779?via%3Dihubes
dc.identifier.publicationtitleInternational Journal of Hydrogen Energyes
dc.peerreviewedSIes
dc.description.projectMinisterio de Ciencia e Innovación y Ministerio de Universidades (Beca PGC2018-093745-B-I00)es
dc.description.projectJunta de Castilla y León (Beca VA124G18)es
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco2212 Física Teóricaes


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem