Mostrar el registro sencillo del ítem
dc.contributor.author | Amado Caballero, Patricia | |
dc.contributor.author | Casaseca de la Higuera, Juan Pablo | |
dc.contributor.author | Alberola López, Susana | |
dc.contributor.author | Andrés de Llano, Jesús María | |
dc.contributor.author | López Villalobos, José Antonio | |
dc.contributor.author | Alberola López, Carlos | |
dc.date.accessioned | 2023-08-29T07:51:02Z | |
dc.date.available | 2023-08-29T07:51:02Z | |
dc.date.issued | 2023 | |
dc.identifier.citation | Artificial Intelligence in Medicine, 2023, vol. 143, 102630 | es |
dc.identifier.issn | 0933-3657 | es |
dc.identifier.uri | https://uvadoc.uva.es/handle/10324/61199 | |
dc.description | Producción Científica | es |
dc.description.abstract | Attention Deficit/Hyperactivity Disorder (ADHD) is a prevalent neurodevelopmental disorder in childhood that often persists into adulthood. Objectively diagnosing ADHD can be challenging due to the reliance on subjective questionnaires in clinical assessment. Fortunately, recent advancements in artificial intelligence (AI) have shown promise in providing objective diagnoses through the analysis of medical images or activity recordings. These AI-based techniques have demonstrated accurate ADHD diagnosis; however, the growing complexity of deep learning models has introduced a lack of interpretability. These models often function as black boxes, unable to offer meaningful insights into the data patterns that characterize ADHD. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | Elsevier | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | Diagnóstico | es |
dc.subject | Hiperactividad | es |
dc.subject.classification | ADHD | es |
dc.subject.classification | Actigraphy | es |
dc.subject.classification | Deep learning | es |
dc.subject.classification | TDAH | es |
dc.subject.classification | Actigrafía | es |
dc.subject.classification | Aprendizaje profundo | es |
dc.title | Insight into ADHD diagnosis with deep learning on Actimetry: Quantitative interpretation of occlusion maps in age and gender subgroups | es |
dc.type | info:eu-repo/semantics/article | es |
dc.rights.holder | © 2023 The Authors | es |
dc.identifier.doi | 10.1016/j.artmed.2023.102630 | es |
dc.relation.publisherversion | https://www.sciencedirect.com/science/article/pii/S0933365723001446?via%3Dihub | es |
dc.identifier.publicationfirstpage | 102630 | es |
dc.identifier.publicationtitle | Artificial Intelligence in Medicine | es |
dc.identifier.publicationvolume | 143 | es |
dc.peerreviewed | SI | es |
dc.description.project | Agencia Estatal de Investigación (grants PID2020-115339RB-I00, TED2021-130090B-I00 and TED2021-131536B-I00) | es |
dc.description.project | EU Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie grant agreement (101008297) | es |
dc.description.project | Company ESAOTE Ltd (grant 18IQBM) | es |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/101008297 | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es |
dc.subject.unesco | 3205.07 Neurología | es |
dc.subject.unesco | 32 Ciencias Médicas | es |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
La licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional