Mostrar el registro sencillo del ítem

dc.contributor.authorAmado Caballero, Patricia
dc.contributor.authorCasaseca de la Higuera, Juan Pablo 
dc.contributor.authorAlberola López, Susana
dc.contributor.authorAndrés de Llano, Jesús María
dc.contributor.authorLópez Villalobos, José Antonio
dc.contributor.authorAlberola López, Carlos 
dc.date.accessioned2023-08-29T07:51:02Z
dc.date.available2023-08-29T07:51:02Z
dc.date.issued2023
dc.identifier.citationArtificial Intelligence in Medicine, 2023, vol. 143, 102630es
dc.identifier.issn0933-3657es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/61199
dc.descriptionProducción Científicaes
dc.description.abstractAttention Deficit/Hyperactivity Disorder (ADHD) is a prevalent neurodevelopmental disorder in childhood that often persists into adulthood. Objectively diagnosing ADHD can be challenging due to the reliance on subjective questionnaires in clinical assessment. Fortunately, recent advancements in artificial intelligence (AI) have shown promise in providing objective diagnoses through the analysis of medical images or activity recordings. These AI-based techniques have demonstrated accurate ADHD diagnosis; however, the growing complexity of deep learning models has introduced a lack of interpretability. These models often function as black boxes, unable to offer meaningful insights into the data patterns that characterize ADHD.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherElsevieres
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectDiagnósticoes
dc.subjectHiperactividades
dc.subject.classificationADHDes
dc.subject.classificationActigraphyes
dc.subject.classificationDeep learninges
dc.subject.classificationTDAHes
dc.subject.classificationActigrafíaes
dc.subject.classificationAprendizaje profundoes
dc.titleInsight into ADHD diagnosis with deep learning on Actimetry: Quantitative interpretation of occlusion maps in age and gender subgroupses
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2023 The Authorses
dc.identifier.doi10.1016/j.artmed.2023.102630es
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0933365723001446?via%3Dihubes
dc.identifier.publicationfirstpage102630es
dc.identifier.publicationtitleArtificial Intelligence in Medicinees
dc.identifier.publicationvolume143es
dc.peerreviewedSIes
dc.description.projectAgencia Estatal de Investigación (grants PID2020-115339RB-I00, TED2021-130090B-I00 and TED2021-131536B-I00)es
dc.description.projectEU Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie grant agreement (101008297)es
dc.description.projectCompany ESAOTE Ltd (grant 18IQBM)es
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/101008297
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco3205.07 Neurologíaes
dc.subject.unesco32 Ciencias Médicases


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem