Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/61300
Título
Forgotten giants: Robust climate signal in pollarded trees
Autor
Año del Documento
2023
Editorial
Elsevier
Descripción
Producción Científica
Documento Fuente
Science of The Total Environment, 2023, vol. 903, 166591
Resumen
Tree ring records are among the most valuable resources to create high-resolution climate reconstructions. Most climate reconstructions are based on old trees growing in inaccessible mountainous areas with low human activity. Therefore, reconstruction of climate conditions in lowlands is usually based on data from distant mountains. Albeit old trees can be common in humanized areas, they are not used for climate reconstructions. Pollarding was a common traditional management in Europe that enabled trees to maintain great vitality for periods exceeding the longevity of unmanaged trees. We evaluate the potential of pollarded deciduous oaks to record past climate signal. We sampled four pollarded woodlands in Central Spain under continental Mediterranean climate. We hypothesized that pollarded trees have a strong response to water availability during current period without pollarding management, but also in the period under traditional management if pruning was asynchronous among trees. Moreover, we hypothesized that if climate is a regional driver of oak secondary growth, chronologies from different woodlands will be correlated. Pollard oaks age exceeded 500 years with a strong response to Standardized Precipitation-Evapotranspiration Index (SPEI) from 9 to 11 months. Climate signal was exceptionally high in three of the sites (r2 = 0.443–0.655) during low management period (1962–2022). The largest fraction of this climate signal (≈70 %) could be retrieved during the traditional management period (1902–1961) in the three sites where pollarding was asynchronous. Chronologies were significantly correlated since the 19th century for all the studied period, highlighting a shared climate forcing. We identified critical points to optimize pollard tree sampling schema. Our results show the enormous potential of pollarded woodlands to reconstruct hydroclimate conditions in the Mediterranean with a fine spatial grain. Studying pollarded trees is an urgent task, since the temporal window to retrieve the valuable information in pollarded trees is closing as these giants collapse and their wood rots.
Materias (normalizadas)
Gestión forestal
Dendrocronología
Materias Unesco
3106 Ciencia Forestal
Palabras Clave
Ancient trees
Tree-ring
Pollard
Árboles centenarios
Anillo de árbol
Árbol desmochado
ISSN
0048-9697
Revisión por pares
SI
Patrocinador
Junta de Castilla y León-Consejería de Educación [IR2020-1-UVA08; VA171P20]
EU LIFE Soria Forest Adapt [LIFE19 CCA/ES/001181]
Ministerio de Ciencia e Innovación - AEI (IJC2019-040571-I)
Ministerio de Ciencia e Innovación - AEI (PRE2018-084106)
EU LIFE Soria Forest Adapt [LIFE19 CCA/ES/001181]
Ministerio de Ciencia e Innovación - AEI (IJC2019-040571-I)
Ministerio de Ciencia e Innovación - AEI (PRE2018-084106)
Propietario de los Derechos
© 2023 The Authors
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Ficheros en el ítem
La licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional