Mostrar el registro sencillo del ítem

dc.contributor.authorChaganti, Rajasekhar
dc.contributor.authorRustam, Furqan
dc.contributor.authorDaghriri, Talal
dc.contributor.authorTorre Díez, Isabel de la 
dc.contributor.authorVidal Mazón, Juan Luis
dc.contributor.authorRodríguez, Carmen Lili
dc.contributor.authorAshraf, Imran
dc.date.accessioned2023-09-13T08:19:10Z
dc.date.available2023-09-13T08:19:10Z
dc.date.issued2022
dc.identifier.citationSensors, 2022, Vol. 22, Nº. 19, 7692es
dc.identifier.issn1424-8220es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/61544
dc.descriptionProducción Científicaes
dc.description.abstractBuilding energy consumption prediction has become an important research problem within the context of sustainable homes and smart cities. Data-driven approaches have been regarded as the most suitable for integration into smart houses. With the wide deployment of IoT sensors, the data generated from these sensors can be used for modeling and forecasting energy consumption patterns. Existing studies lag in prediction accuracy and various attributes of buildings are not very well studied. This study follows a data-driven approach in this regard. The novelty of the paper lies in the fact that an ensemble model is proposed, which provides higher performance regarding cooling and heating load prediction. Moreover, the influence of different features on heating and cooling load is investigated. Experiments are performed by considering different features such as glazing area, orientation, height, relative compactness, roof area, surface area, and wall area. Results indicate that relative compactness, surface area, and wall area play a significant role in selecting the appropriate cooling and heating load for a building. The proposed model achieves 0.999 R2 for heating load prediction and 0.997 R2 for cooling load prediction, which is superior to existing state-of-the-art models. The precise prediction of heating and cooling load, can help engineers design energy-efficient buildings, especially in the context of future smart homes.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherMDPIes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectEnergía - Consumoes
dc.subjectAprendizaje automáticoes
dc.subjectCooling systemses
dc.subjectHeatinges
dc.subjectCalefacciónes
dc.subjectEdificios sostenibleses
dc.subjectEdificios inteligenteses
dc.subjectDomoticaes
dc.titleBuilding heating and cooling load prediction using ensemble machine learning modeles
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2022 The Authorses
dc.identifier.doi10.3390/s22197692es
dc.relation.publisherversionhttps://www.mdpi.com/1424-8220/22/19/7692es
dc.identifier.publicationfirstpage7692es
dc.identifier.publicationissue19es
dc.identifier.publicationtitleSensorses
dc.identifier.publicationvolume22es
dc.peerreviewedSIes
dc.identifier.essn1424-8220es
dc.rightsAtribución 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco3305.14 Viviendases
dc.subject.unesco3311.01 Tecnología de la Automatizaciónes


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem