Mostrar el registro sencillo del ítem

dc.contributor.authorFernández Guisuraga, José Manuel
dc.contributor.authorSuarez Seoane, Susana
dc.contributor.authorQuintano Pastor, María del Carmen 
dc.contributor.authorFernández Manso, Alfonso
dc.contributor.authorCalvo, Leonor
dc.date.accessioned2023-09-15T08:10:14Z
dc.date.available2023-09-15T08:10:14Z
dc.date.issued2022
dc.identifier.citationRemote Sensing, 2022, Vol. 14, Nº. 20, 5138es
dc.identifier.issn2072-4292es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/61584
dc.descriptionProducción Científicaes
dc.description.abstractWe aimed to compare the potential of physical-based models (radiative transfer and pixel unmixing models) for evaluating the short-term resilience to fire of several shrubland communities as a function of their regenerative strategy and burn severity. The study site was located within the perimeter of a wildfire that occurred in summer 2017 in the northwestern Iberian Peninsula. A pre- and post-fire time series of Sentinel-2 satellite imagery was acquired to estimate fractional vegetation cover (FVC) from the (i) PROSAIL-D radiative transfer model inversion using the random forest algorithm, and (ii) multiple endmember spectral mixture analysis (MESMA). The FVC retrieval was validated throughout the time series by means of field data stratified by plant community type (i.e., regenerative strategy). The inversion of PROSAIL-D featured the highest overall fit for the entire time series (R2 > 0.75), followed by MESMA (R2 > 0.64). We estimated the resilience of shrubland communities in terms of FVC recovery using an impact-normalized resilience index and a linear model. High burn severity negatively influenced the short-term resilience of shrublands dominated by facultative seeder species. In contrast, shrublands dominated by resprouters reached pre-fire FVC values regardless of burn severity.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherMDPIes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectFractional vegetation coveres
dc.subjectSpectral mixture analysises
dc.subjectEspectroscopiaes
dc.subjectPROSAILes
dc.subjectForest fireses
dc.subjectBosques - Incendios - Prevención y controles
dc.subjectWildfireses
dc.subjectIncendio forestales
dc.subjectEnvironmental degradationes
dc.subjectDeterioro del medio ambientees
dc.subjectForests and forestryes
dc.subjectBosques y silviculturaes
dc.titleComparison of physical-based models to measure forest resilience to fire as a function of burn severityes
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2022 The Authorses
dc.identifier.doi10.3390/rs14205138es
dc.relation.publisherversionhttps://www.mdpi.com/2072-4292/14/20/5138es
dc.identifier.publicationfirstpage5138es
dc.identifier.publicationissue20es
dc.identifier.publicationtitleRemote Sensinges
dc.identifier.publicationvolume14es
dc.peerreviewedSIes
dc.description.projectMinisterio de Economía y Competitividad y Fondo Europeo de Desarrollo Regional (FEDER) - (project AGL2017-86075-C2-1-R)es
dc.description.projectJunta de Castilla y León - (project LE005P20)es
dc.description.projectBritish Ecological Society - (project SR22-100154)es
dc.identifier.essn2072-4292es
dc.rightsAtribución 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco3307 Tecnología Electrónicaes
dc.subject.unesco3308 Ingeniería y Tecnología del Medio Ambientees
dc.subject.unesco3106.08 Silviculturaes


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem