Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/61604
Título
Castelnuovo–Mumford regularity of projective monomial curves via sumsets
Año del Documento
2023
Editorial
Springer
Descripción
Producción Científica
Documento Fuente
Mediterranean Journal of Mathematics, 2023, vol. 20, n. 5, art. 287
Abstract
Let A={a0,…,an−1} be a finite set of n≥4 non-negative relatively prime integers, such that 0=a0<a1<⋯<an−1=d. The s-fold sumset of A is the set sA of integers that contains all the sums of s elements in A. On the other hand, given an infinite field k, one can associate with A the projective monomial curve CA
parametrized by A,
CA={(vd:ua1vd−a1:⋯:uan−2vd−an−2:ud)∣(u:v)∈P1k}⊂Pn−1k.
The exponents in the previous parametrization of CA
define a homogeneous semigroup S⊂N2. We provide several results relating the Castelnuovo–Mumford regularity of CA to the behavior of the sumsets of A and to the combinatorics of the semigroup S that reveal a new interplay between commutative algebra and additive number theory.
Materias Unesco
12 Matemáticas
Palabras Clave
Castelnuovo–Mumford regularity
Projective monomial curve
Semigroup ring
Sumset
Apery set
ISSN
1660-5446
Revisión por pares
SI
Patrocinador
Publicación en abierto financiada por el Consorcio de Bibliotecas Universitarias de Castilla y León (BUCLE), con cargo al Programa Operativo 2014ES16RFOP009 FEDER 2014-2020 DE CASTILLA Y LEÓN, Actuación:20007-CL - Apoyo Consorcio BUCLE
Version del Editor
Propietario de los Derechos
2023
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Collections
Files in this item
Except where otherwise noted, this item's license is described as Atribución 4.0 Internacional