Mostrar el registro sencillo del ítem

dc.contributor.authorGómez Ramos, Raúl
dc.contributor.authorDuque Domingo, Jaime
dc.contributor.authorZalama Casanova, Eduardo 
dc.contributor.authorGómez García-Bermejo, Jaime 
dc.contributor.authorLópez, Joaquín
dc.date.accessioned2023-09-19T07:11:41Z
dc.date.available2023-09-19T07:11:41Z
dc.date.issued2022
dc.identifier.citationSensors, 2022, Vol. 22, Nº. 21, 8109es
dc.identifier.issn1424-8220es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/61626
dc.descriptionProducción Científicaes
dc.description.abstractNowadays, one of the most important objectives in health research is the improvement of the living conditions and well-being of the elderly, especially those who live alone. These people may experience undesired or dangerous situations in their daily life at home due to physical, sensorial or cognitive limitations, such as forgetting their medication or wrong eating habits. This work focuses on the development of a database in a home, through non-intrusive technology, where several users are residing by combining: a set of non-intrusive sensors which captures events that occur in the house, a positioning system through triangulation using beacons and a system for monitoring the user’s state through activity wristbands. Two months of uninterrupted measurements were obtained on the daily habits of 2 people who live with a pet and receive sporadic visits, in which 18 different types of activities were labelled. In order to validate the data, a system for the real-time recognition of the activities carried out by these residents was developed using different current Deep Learning (DL) techniques based on neural networks, such as Recurrent Neural Networks (RNN), Long Short-Term Memory networks (LSTM) or Gated Recurrent Unit networks (GRU). A personalised prediction model was developed for each user, resulting in hit rates ranging from 88.29% to 90.91%. Finally, a data sharing algorithm has been developed to improve the generalisability of the model and to avoid overtraining the neural network.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherMDPIes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectDatasetes
dc.subjectElectronic data processing - Data preparationes
dc.subjectMachine learninges
dc.subjectBiosensorses
dc.subjectComputer communication systemses
dc.subjectIngeniería de sistemases
dc.subjectNeural networks (Computer science)es
dc.subjectRedes neuronales (Informática)es
dc.subjectHome automationes
dc.subjectAutomatización del hogares
dc.subjectDomóticaes
dc.subjectArtificial intelligence
dc.titleSDHAR-HOME: A sensor dataset for human activity recognition at homees
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2022 The Authorses
dc.identifier.doi10.3390/s22218109es
dc.relation.publisherversionhttps://www.mdpi.com/1424-8220/22/21/8109es
dc.identifier.publicationfirstpage8109es
dc.identifier.publicationissue21es
dc.identifier.publicationtitleSensorses
dc.identifier.publicationvolume22es
dc.peerreviewedSIes
dc.description.projectMinisterio de Ciencia e Innovación/Agencia Estatal de Investigación (AEI)/10.13039/501100011033, Fondo Europeo de Desarrollo Regional (FEDER) y Junta de Castilla y León, Consejería de Familia - (project PID2021-123020OB-I00)es
dc.identifier.essn1424-8220es
dc.rightsAtribución 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco1203.04 Inteligencia Artificiales
dc.subject.unesco1203.25 Diseño de Sistemas Sensoreses


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem