Mostrar el registro sencillo del ítem
dc.contributor.author | Gómez Ramos, Raúl | |
dc.contributor.author | Duque Domingo, Jaime | |
dc.contributor.author | Zalama Casanova, Eduardo | |
dc.contributor.author | Gómez García-Bermejo, Jaime | |
dc.contributor.author | López, Joaquín | |
dc.date.accessioned | 2023-09-19T07:11:41Z | |
dc.date.available | 2023-09-19T07:11:41Z | |
dc.date.issued | 2022 | |
dc.identifier.citation | Sensors, 2022, Vol. 22, Nº. 21, 8109 | es |
dc.identifier.issn | 1424-8220 | es |
dc.identifier.uri | https://uvadoc.uva.es/handle/10324/61626 | |
dc.description | Producción Científica | es |
dc.description.abstract | Nowadays, one of the most important objectives in health research is the improvement of the living conditions and well-being of the elderly, especially those who live alone. These people may experience undesired or dangerous situations in their daily life at home due to physical, sensorial or cognitive limitations, such as forgetting their medication or wrong eating habits. This work focuses on the development of a database in a home, through non-intrusive technology, where several users are residing by combining: a set of non-intrusive sensors which captures events that occur in the house, a positioning system through triangulation using beacons and a system for monitoring the user’s state through activity wristbands. Two months of uninterrupted measurements were obtained on the daily habits of 2 people who live with a pet and receive sporadic visits, in which 18 different types of activities were labelled. In order to validate the data, a system for the real-time recognition of the activities carried out by these residents was developed using different current Deep Learning (DL) techniques based on neural networks, such as Recurrent Neural Networks (RNN), Long Short-Term Memory networks (LSTM) or Gated Recurrent Unit networks (GRU). A personalised prediction model was developed for each user, resulting in hit rates ranging from 88.29% to 90.91%. Finally, a data sharing algorithm has been developed to improve the generalisability of the model and to avoid overtraining the neural network. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | MDPI | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | Dataset | es |
dc.subject | Electronic data processing - Data preparation | es |
dc.subject | Machine learning | es |
dc.subject | Biosensors | es |
dc.subject | Computer communication systems | es |
dc.subject | Ingeniería de sistemas | es |
dc.subject | Neural networks (Computer science) | es |
dc.subject | Redes neuronales (Informática) | es |
dc.subject | Home automation | es |
dc.subject | Automatización del hogar | es |
dc.subject | Domótica | es |
dc.subject | Artificial intelligence | |
dc.title | SDHAR-HOME: A sensor dataset for human activity recognition at home | es |
dc.type | info:eu-repo/semantics/article | es |
dc.rights.holder | © 2022 The Authors | es |
dc.identifier.doi | 10.3390/s22218109 | es |
dc.relation.publisherversion | https://www.mdpi.com/1424-8220/22/21/8109 | es |
dc.identifier.publicationfirstpage | 8109 | es |
dc.identifier.publicationissue | 21 | es |
dc.identifier.publicationtitle | Sensors | es |
dc.identifier.publicationvolume | 22 | es |
dc.peerreviewed | SI | es |
dc.description.project | Ministerio de Ciencia e Innovación/Agencia Estatal de Investigación (AEI)/10.13039/501100011033, Fondo Europeo de Desarrollo Regional (FEDER) y Junta de Castilla y León, Consejería de Familia - (project PID2021-123020OB-I00) | es |
dc.identifier.essn | 1424-8220 | es |
dc.rights | Atribución 4.0 Internacional | * |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es |
dc.subject.unesco | 1203.04 Inteligencia Artificial | es |
dc.subject.unesco | 1203.25 Diseño de Sistemas Sensores | es |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
La licencia del ítem se describe como Atribución 4.0 Internacional