Mostrar el registro sencillo del ítem
dc.contributor.author | García Calva, Tomás Alberto | |
dc.contributor.author | Moríñigo Sotelo, Daniel | |
dc.contributor.author | Fernández Cavero, Vanessa | |
dc.contributor.author | Romero Troncoso, René de Jesús | |
dc.date.accessioned | 2023-09-19T12:44:15Z | |
dc.date.available | 2023-09-19T12:44:15Z | |
dc.date.issued | 2022 | |
dc.identifier.citation | Energies, 2022, Vol. 15, Nº. 21, 7855 | es |
dc.identifier.issn | 1996-1073 | es |
dc.identifier.uri | https://uvadoc.uva.es/handle/10324/61647 | |
dc.description | Producción Científica | es |
dc.description.abstract | There is an increasing interest in improving energy efficiency and reducing operational costs of induction motors in the industry. These costs can be significantly reduced, and the efficiency of the motor can be improved if the condition of the machine is monitored regularly and if monitoring techniques are able to detect failures at an incipient stage. An early fault detection makes the elimination of costly standstills, unscheduled downtime, unplanned breakdowns, and industrial injuries possible. Furthermore, maintaining a proper motor operation by reducing incipient failures can reduce motor losses and extend its operating life. There are many review papers in which analyses of fault detection techniques in induction motors can be found. However, all these reviewed techniques can detect failures only at developed or advanced stages. To our knowledge, no review exists that assesses works able to detect failures at incipient stages. This paper presents a review of techniques and methodologies that can detect faults at early stages. The review presents an analysis of the existing techniques focusing on the following principal motor components: stator, rotor, and rolling bearings. For steady-state and transient operating modes of the motor, the methodologies are discussed and recommendations for future research in this area are also presented. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | MDPI | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | Artificial intelligence | es |
dc.subject | Electric motors, Induction | es |
dc.subject | Motores de inducción | es |
dc.subject | Fault diagnosis | es |
dc.subject | Fault location (Engineering) | es |
dc.subject | Machine learning | es |
dc.subject | Aprendizaje automático | es |
dc.subject | Quality control | es |
dc.subject | Control de calidad | es |
dc.subject | Signal processing | es |
dc.subject | Procesamiento de señales | es |
dc.title | Early detection of faults in induction motors—A review | es |
dc.type | info:eu-repo/semantics/article | es |
dc.rights.holder | © 2022 The Authors | es |
dc.identifier.doi | 10.3390/en15217855 | es |
dc.relation.publisherversion | https://www.mdpi.com/1996-1073/15/21/7855 | es |
dc.identifier.publicationfirstpage | 7855 | es |
dc.identifier.publicationissue | 21 | es |
dc.identifier.publicationtitle | Energies | es |
dc.identifier.publicationvolume | 15 | es |
dc.peerreviewed | SI | es |
dc.identifier.essn | 1996-1073 | es |
dc.rights | Atribución 4.0 Internacional | * |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es |
dc.subject.unesco | 1203.04 Inteligencia Artificial | es |
dc.subject.unesco | 3306.03 Motores Eléctricos | es |
dc.subject.unesco | 3306 Ingeniería y Tecnología Eléctricas | es |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
La licencia del ítem se describe como Atribución 4.0 Internacional