Mostrar el registro sencillo del ítem

dc.contributor.authorMujahid, Muhammad
dc.contributor.authorRustam, Furqan
dc.contributor.authorÁlvarez, Roberto
dc.contributor.authorVidal Mazón, Juan Luis
dc.contributor.authorTorre Díez, Isabel de la 
dc.contributor.authorAshraf, Imran
dc.date.accessioned2023-09-22T07:48:37Z
dc.date.available2023-09-22T07:48:37Z
dc.date.issued2022
dc.identifier.citationDiagnostics, 2022, Vol. 12, Nº. 5, 1280es
dc.identifier.issn2075-4418es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/61772
dc.descriptionProducción Científicaes
dc.description.abstractPneumonia is one of the leading causes of death in both infants and elderly people, with approximately 4 million deaths each year. It may be a virus, bacterial, or fungal, depending on the contagious pathogen that damages the lung’s tiny air sacs (alveoli). Patients with underlying disorders such as asthma, a weakened immune system, hospitalized babies, and older persons on ventilators are all at risk, particularly if pneumonia is not detected early. Despite the existing approaches for its diagnosis, low accuracy and efficiency require further research for more accurate systems. This study is a similar endeavor for the detection of pneumonia by the use of X-ray images. The dataset is preprocessed to make it suitable for transfer learning tasks. Different pre-trained convolutional neural network (CNN) variants are utilized, including VGG16, Inception-v3, and ResNet50. Ensembles are made by incorporating CNN with Inception-V3, VGG-16, and ResNet50. Besides the common evaluation metrics, the performance of the pre-trained and ensemble deep learning models is measured with Cohen’s kappa as well as the area under the curve (AUC). Experimental results show that Inception-V3 with CNN attained the highest accuracy and recall score of 99.29% and 99.73%, respectively.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherMDPIes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectPneumoniaes
dc.subjectNeumoníaes
dc.subjectLungs - Diseaseses
dc.subjectPulmones - Enfermedadeses
dc.subjectChest X-rayes
dc.subjectChest - Radiographyes
dc.subjectTórax - Radiografíaes
dc.subjectMachine learninges
dc.subjectAprendizaje automáticoes
dc.subjectArtificial intelligencees
dc.titlePneumonia classification from X-ray images with Inception-V3 and convolutional neural networkes
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2022 The Authorses
dc.identifier.doi10.3390/diagnostics12051280es
dc.relation.publisherversionhttps://www.mdpi.com/2075-4418/12/5/1280es
dc.identifier.publicationfirstpage1280es
dc.identifier.publicationissue5es
dc.identifier.publicationtitleDiagnosticses
dc.identifier.publicationvolume12es
dc.peerreviewedSIes
dc.identifier.essn2075-4418es
dc.rightsAtribución 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco3205.08 Enfermedades Pulmonareses
dc.subject.unesco1203.04 Inteligencia Artificiales


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem