Mostrar el registro sencillo del ítem

dc.contributor.authorMerillas Valero, Beatriz 
dc.contributor.authorVareda, João Pedro
dc.contributor.authorMartín de León, Judit 
dc.contributor.authorRodríguez Pérez, Miguel Ángel 
dc.contributor.authorDurães, Luisa
dc.date.accessioned2023-10-05T08:15:05Z
dc.date.available2023-10-05T08:15:05Z
dc.date.issued2022
dc.identifier.citationPolymers, 2022, Vol. 14, Nº. 13, 2556es
dc.identifier.issn2073-4360es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/61884
dc.descriptionProducción Científicaes
dc.description.abstractNowadays, our society is facing problems related to energy availability. Owing to the energy savings that insulators provide, the search for effective insulating materials is a focus of interest. Since the current insulators do not meet the increasingly strict requirements, developing materials with a greater insulating capacity is needed. Until now, several nanoporous materials have been considered as superinsulators achieving thermal conductivities below that of the air 26 mW/(m K), like nanocellular PMMA/TPU, silica aerogels, and polyurethane aerogels reaching 24.8, 10, and 12 mW/(m K), respectively. In the search for the minimum thermal conductivity, still undiscovered, the first step is understanding heat transfer in nanoporous materials. The main features leading to superinsulation are low density, nanopores, and solid interruptions hindering the phonon transfer. The second crucial condition is obtaining reliable thermal conductivity measurement techniques. This review summarizes these techniques, and data in the literature regarding the structure and thermal conductivity of two nanoporous materials, nanocellular polymers and aerogels. The key conclusion of this analysis specifies that only steady-state methods provide a reliable value for thermal conductivity of superinsulators. Finally, a theoretical discussion is performed providing a detailed background to further explore the lower limit of superinsulation to develop more efficient materials.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherMDPIes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectNanoporous materialses
dc.subjectPolymerses
dc.subjectThermal conductivityes
dc.subjectFísica de la materia condensadaes
dc.subjectCondensed matteres
dc.subjectMaterials sciencees
dc.subjectThermal insulationes
dc.subjectAislamiento térmicoes
dc.subjectGelses
dc.subjectAerogeles
dc.subjectChemistry
dc.titleThermal conductivity of nanoporous materials: Where Is the limit?es
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2022 The Authorses
dc.identifier.doi10.3390/polym14132556es
dc.relation.publisherversionhttps://www.mdpi.com/2073-4360/14/13/2556es
dc.identifier.publicationfirstpage2556es
dc.identifier.publicationissue13es
dc.identifier.publicationtitlePolymerses
dc.identifier.publicationvolume14es
dc.peerreviewedSIes
dc.description.projectMinisterio de Ciencia, Innovación y Universidades - (grant FPU17/03299)es
dc.description.projectMinisterio de Ciencia, Innovación y Universidades - (project RTI2018-098749-B-I00)es
dc.description.projectJunta de Castilla y León y Ente Público Regional de la Energía de Castilla y León (EREN) - (Grant VA202P20)es
dc.description.projectJunta de Castilla y León y Fondo Europeo de Desarrollo Regional (FEDER) - (grant CLU-2019-04)es
dc.identifier.essn2073-4360es
dc.rightsAtribución 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco23 Químicaes
dc.subject.unesco2206.10 Polímeroses


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem