Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/62113
Título
Aplicación de técnicas de deep learning para clasificar los eventos de apnea e hipopnea mediante las señales de pulsioximetría
Autor
Director o Tutor
Año del Documento
2023
Titulación
Grado en Ingeniería Biomédica
Abstract
La apnea obstructiva del sueño (AOS) es una patología de gran prevalencia en la población general con graves repercusiones para la calidad de vida de las personas que la padecen. Está directamente relacionada con el desarrollo de enfermedades cardiovasculares, además de aumentar el riesgo de accidentes de tráfico y la tasa de mortalidad. A pesar de que la polisomnografía nocturna es reconocida como el gold standard para el diagnóstico de la AOS, presenta una serie de limitaciones significativas. Se trata de una prueba con un elevado coste económico, laboriosa y no siempre accesible, aparte de ser incómoda para los pacientes al tener que dormir una noche fuera de sus domicilios particulares conectados a múltiples sensores.
Ante estos inconvenientes, la comunidad científica ha explorado diversas alternativas para ayudar en el diagnóstico de la AOS. Entre ellas se encuentra la pulsioximetría, una técnica simple, fiable y accesible que registra las señales de saturación de oxígeno (SpO2) y frecuencia de pulso (PR), las cuales contienen información acerca de los episodios de hipoxemia intermitente, normalmente asociados con la aparición de eventos de apnea e hipopnea.
Palabras Clave
Pulsioximetría
Apnea obstructiva del sueño
Idioma
spa
Derechos
openAccess
Collections
- Trabajos Fin de Grado UVa [29685]
Files in this item
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional