• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UVaDOCCommunitiesBy Issue DateAuthorsSubjectsTitles

    My Account

    Login

    Statistics

    View Usage Statistics

    Share

    View Item 
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Comunicaciones a congresos, conferencias, etc.
    • View Item
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Comunicaciones a congresos, conferencias, etc.
    • View Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/62373

    Título
    Analysis of Data Quality in Digital Smart Cities: The Cases of Nantes, Hamburg and Helsinki
    Autor
    Hernández, José L.
    Quijano, Ana
    García, Rubén
    Nouaille, Pierre
    Risch, Lukas
    Virtanen, Mikko
    Miguel Jiménez, Ignacio deAutoridad UVA Orcid
    Congreso
    Proceedings of the 11th International Conference on Data Science, Technology and Applications - DATA
    Año del Documento
    2022
    Editorial
    SciTePress
    Descripción Física
    8 p.
    Descripción
    Producción Científica
    Documento Fuente
    Proceedings of the 11th International Conference on Data Science, Technology and Applications - DATA, Lisbon, Portugal, 2022, SciTePress, pp. 353-360
    Abstract
    The Smart Cities concept is supported by the use of Information and Communication Technologies (ICT), which enables the digitalisation of the city assets. Then, cities are nowadays driven by data, with a clear dependency on the data collection approaches. Decisions and criteria for urban transformation therefore rely on data and Key Performance Indicators. However, one question remains and refers the reliability and credibility of data that guide the decision-making processes. Many efforts are made in the definition of the data quality methodologies, but not in analysing the real situation about data collection is smart cities. This paper applies a methodology to quantitatively analyse the real quality of the data-sets in the cities of Nantes, Hamburg and Helsinki. This work is under the umbrella of mySMARTLife project (GA #731297). The main conclusion or lessons learnt is the need for more appropriate methods to increase data quality, instead of defining new methodologies. Data qual ity requires improvements to make better informed decisions and obtain more credible Key Performance Indicators.
    Palabras Clave
    Information Quality
    Smart Cities and Urban Data Analytics
    ISBN
    978-989-758-583-8
    DOI
    10.5220/0011271900003269
    Patrocinador
    EU H2020 programme (GA #731297)
    Version del Editor
    https://doi.org/10.5220/0011271900003269
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/62373
    Tipo de versión
    info:eu-repo/semantics/acceptedVersion
    Derechos
    openAccess
    Collections
    • DEP71 - Comunicaciones a congresos, conferencias, etc. [120]
    Show full item record
    Files in this item
    Nombre:
    jhernandez_Analysis_of_data_quality.docx
    Tamaño:
    1.012Mb
    Formato:
    Documento Word
    FilesOpen
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalExcept where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10