• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Navegar

    Todo o repositórioComunidadesPor data do documentoAutoresAssuntosTítulos

    Minha conta

    Entrar

    Estatística

    Ver as estatísticas de uso

    Compartir

    Ver item 
    •   Página inicial
    • TRABALHO DE CONCLUSÃO DE ESTUDO
    • Trabajos Fin de Grado UVa
    • Ver item
    •   Página inicial
    • TRABALHO DE CONCLUSÃO DE ESTUDO
    • Trabajos Fin de Grado UVa
    • Ver item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/63072

    Título
    Interpretación de redes neuronales profundas como herramienta para diferenciar subtipos de TDAH a partir de patrones de actividad
    Autor
    Chico Delgado, Guillermo
    Director o Tutor
    Amado Caballero, PatriciaAutoridad UVA
    Casaseca de la Higuera, Juan PabloAutoridad UVA
    Editor
    Universidad de Valladolid. Escuela Técnica Superior de Ingenieros de TelecomunicaciónAutoridad UVA
    Año del Documento
    2023
    Titulación
    Grado en Ingeniería de Tecnologías de Telecomunicación
    Resumo
    El Trastorno por Déficit de Atención e Hiperactividad (TDAH) es un trastorno neuropsiquiátrico que afecta a niños y a adultos. El TDAH se divide en tres subtipos: predominantemente inatento, predominantemente hiperactivo y combinado. Tradicionalmente, el diagnóstico tanto del TDAH como de su subtipo se han basado en evaluaciones médicas con un importante componente subjetivo. El correcto diagnóstico del subtipo de TDAH es fundamental para el desarrollo de un tratamiento adecuado y adaptado al paciente. Estudios recientes han revelado que el uso de métodos basados actimetría junto aprendizaje profundo son buenas opciones a la hora de identificar el TDAH, así como diferenciar sus subtipos. Sin embargo, en el caso del TDAH predominantemente hiperactivo, no se ha llevado a cabo ningún estudio de esta índole al tratarse del tipo menos diagnosticado y del que menos información se tiene. Por ello, en el presente trabajo se propone la elaboración de un sistema capaz de caracterizar el TDAH de tipo hiperactivo mediante el análisis de patrones de actividad y técnicas de interpretabilidad. Para ello, a partir de las señales actigráficas de los pacientes, se han creado espectrogramas divididos por el subtipo y se han entrenado redes neuronales convolucionales. Tras ello, se analizan las salidas de dichas redes mediante técnicas como los mapas de oclusión y modelos de mezcla gaussiana.
     
    Attention Deficit Hyperactivity Disorder (ADHD) is a neuropsychiatric disorder that affects children and adults. ADHD is divided into three subtypes: predominantly inattentive, predominantly hyperactive, and combined. Traditionally, the diagnosis of both ADHD and its subtype have been based on medical evaluations with an important subjective component. The correct diagnosis of the ADHD subtype is essential for the development of an suitable treatment adapted to the patient. Recent studies have revealed that the use of actimetry-based methods together with deep learning are good options when it comes to identifying ADHD, as well as differentiating its subtypes. However, in the case of predominantly hyperactive ADHD, no study of this nature has been carried out as it is the least diagnosed type and about which the least information is available. Therefore, in this work we propose the development of a system capable of characterizing hyperactive ADHD through the analysis of activity patterns and interpretability techniques. For this purpose, based on the actigraphic signals of the patients, spectrograms divided by subtype have been created and convolutional neural networks have been trained. After that, the outputs of these networks are analyzed using techniques such as occlusion maps and gaussian mixture models.
    Palabras Clave
    TDAH
    Actigrafía
    Aprendizaje profundo
    Departamento
    Departamento de Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    Idioma
    spa
    URI
    https://uvadoc.uva.es/handle/10324/63072
    Derechos
    openAccess
    Aparece en las colecciones
    • Trabajos Fin de Grado UVa [30857]
    Mostrar registro completo
    Arquivos deste item
    Nombre:
    TFG-G6524.pdf
    Tamaño:
    5.218Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalExceto quando indicado o contrário, a licença deste item é descrito como Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10