Mostrar el registro sencillo del ítem
dc.contributor.author | Martín García, Saray | |
dc.contributor.author | Balenović, Ivan | |
dc.contributor.author | Jurjević, Luka | |
dc.contributor.author | Lizarralde, Iñigo | |
dc.contributor.author | Buján, Sandra | |
dc.contributor.author | Alonso Ponce, Rafael | |
dc.date.accessioned | 2023-11-22T09:59:19Z | |
dc.date.available | 2023-11-22T09:59:19Z | |
dc.date.issued | 2022 | |
dc.identifier.citation | Remote Sensing, 2022, Vol. 14, Nº. 9, 2095 | es |
dc.identifier.issn | 2072-4292 | es |
dc.identifier.uri | https://uvadoc.uva.es/handle/10324/63147 | |
dc.description | Producción Científica | es |
dc.description.abstract | Understorey evaluation is essential in wildlife habitat management, biomass storage and wildfire suppression, among other areas. The lack of a standardised methodology in the field measurements, and in their subsequent analysis, forces researchers to look for procedures that effectively extract understorey data to make management decisions corresponding to actual stand conditions. In this sense, when analysing the understorey characteristics from LiDAR data, it is very usual to ask: “what value should we set the understorey height range to?” It is also usual to answer by setting a numeric value on the basis of previous research. Against that background, this research aims to identify the optimal height to canopy base (HCB) filter–LiDAR metric relationship for estimating understorey height (UH) and understorey cover (UC) using LiDAR data in the Pokupsko Basin lowland forest complex (Croatia). First, several HCB values per plot were obtained from field data (measured HCBi—HCBM-i, where i ϵ (minimum, maximum, mean, percentiles)), and then they were modelled based on LiDAR metrics (estimated HCBi—HCBE-i). These thresholds, measured and estimated HCBi per plot, were used as point cloud filters to estimate understorey parameters directly on the point cloud located under the canopy layer. In this way, it was possible to predict the UH with errors (RMSE) between 0.90 and 2.50 m and the UC with errors (RMSE) between 8.8 and 18.6 in cover percentage. Finally, the sensitivity analysis showed the HCB filter (the upper threshold to select the understorey LiDAR points) is the most important factor affecting the UH estimates, while this factor and the LiDAR metric are the most important factors affecting the UC estimates. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | MDPI | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | Understorey | es |
dc.subject | Forests and forestry | es |
dc.subject | Bosques y silvicultura | es |
dc.subject | Arbustos | es |
dc.subject | Deciduous forest | es |
dc.subject | Forest fires - Prevention and control | es |
dc.subject | Bosques - Incendios - Prevención y control | es |
dc.subject | Forest ecology | es |
dc.subject | Ecología forestal | es |
dc.subject | Forest management | es |
dc.subject | Bosques - Gestión | es |
dc.subject | Sustainable development | es |
dc.subject | Desarrollo sostenible | es |
dc.subject | Croatia | es |
dc.title | What is the most suitable height range of ALS point cloud and LiDAR metric for understorey analysis? A study case in a mixed deciduous forest, Pokupsko basin, Croatia | es |
dc.type | info:eu-repo/semantics/article | es |
dc.rights.holder | © 2022 The Authors | es |
dc.identifier.doi | 10.3390/rs14092095 | es |
dc.relation.publisherversion | https://www.mdpi.com/2072-4292/14/9/2095?trk=organization-update_share-update_update-text | es |
dc.identifier.publicationfirstpage | 2095 | es |
dc.identifier.publicationissue | 9 | es |
dc.identifier.publicationtitle | Remote Sensing | es |
dc.identifier.publicationvolume | 14 | es |
dc.peerreviewed | SI | es |
dc.description.project | Ministerio de Economía, Industria y Competitividad - (grant DI-16-08446) | es |
dc.description.project | Comisión Europea - (grant H2020-EO-2017; 776045) | es |
dc.description.project | Fundación Científica de Croacia - (project IP-2016-06-7686) | es |
dc.identifier.essn | 2072-4292 | es |
dc.rights | Atribución 4.0 Internacional | * |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es |
dc.subject.unesco | 3106 Ciencia Forestal | es |
dc.subject.unesco | 3106.08 Silvicultura | es |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
La licencia del ítem se describe como Atribución 4.0 Internacional