Mostrar el registro sencillo del ítem
dc.contributor.author | Tupinambá Simões, Frederico | |
dc.contributor.author | Pascual, Adrián | |
dc.contributor.author | Guerra Hernández, Juan | |
dc.contributor.author | Ordoñez Alonso, Ángel Cristobal | |
dc.contributor.author | de Conto, Tiago | |
dc.contributor.author | Bravo Oviedo, Felipe | |
dc.date.accessioned | 2023-12-18T08:48:57Z | |
dc.date.available | 2023-12-18T08:48:57Z | |
dc.date.issued | 2023 | |
dc.identifier.citation | Remote Sensing, 2023, Vol. 15, Nº. 5, 1169 | es |
dc.identifier.issn | 2072-4292 | es |
dc.identifier.uri | https://uvadoc.uva.es/handle/10324/63670 | |
dc.description | Producción Científica | es |
dc.description.abstract | The use of mobile laser scanning to survey forest ecosystems is a promising, scalable technology to describe the 3D structure of forests at a high resolution. We use a structurally complex, mixed-species Mediterranean forest to test the performance of a mobile Handheld Laser Scanning (HLS) system to estimate tree attributes within a forest patch in central Spain. We describe the different stages of the HLS approach: field position, ground data collection, scanning path design, point cloud processing, alignment between detected trees and measured reference trees, and finally, the assessment of main tree structural attributes diameter at breast height (DBH) and tree height considering species and tree size as control factors. We surveyed 418 reference trees to account for omission and commission error rates over a 1 ha plot divided into 16 sections and scanned using two different scanning paths. The HLS-based approach reached a high of 88 and 92% tree detection rate for the best combination of scanning path and point cloud processing modes for the HLS system. The root mean squared errors for DBH estimates varied between species: errors for Pinus pinaster were below 2 cm for Scan 02. Quercus pyrenaica, and Alnus glutinosa showed higher error rates. We observed good agreement between ALS and HLS estimates for tree height, highlighting differences to field measurements. Despite the complexity of the mixed forest area surveyed, our results show that HLS is highly efficient at detecting tree locations, estimating DBH, and supporting tree height measurements as confirmed with airborne laser data used for validation. This study is one of the first HLS-based studies conducted in the Mediterranean mixed forest region, where variability in tree allometries and spacing and the presence of natural regeneration pose challenges for the HLS approach. HLS is a feasible, time-efficient, scalable technology for tree mapping in mixed forests with potential to support forest monitoring programmes such as national forest inventories lacking three-dimensional, remote sensing data to support field measurements. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | MDPI | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | Forests and forestry | es |
dc.subject | Bosques y silvicultura | es |
dc.subject | Environmental monitoring | es |
dc.subject | Forest management | es |
dc.subject | Bosques - Gestión - España | es |
dc.subject | Forests and forestry - Remote sensing | es |
dc.subject | Forest monitoring | es |
dc.subject | Teledetección - Aspecto del medio ambiente | es |
dc.subject | Mobile Laser Scanning | es |
dc.subject | Forestry management | es |
dc.subject | Environmental management | es |
dc.subject | Bosques y silvicultura - España - Inventarios | es |
dc.subject | Environmental management | es |
dc.subject | Medio ambiente - Gestión | es |
dc.title | Assessing the performance of a handheld laser scanning system for individual tree mapping—A mixed forests showcase in Spain | es |
dc.type | info:eu-repo/semantics/article | es |
dc.rights.holder | © 2023 The authors | es |
dc.identifier.doi | 10.3390/rs15051169 | es |
dc.relation.publisherversion | https://www.mdpi.com/2072-4292/15/5/1169 | es |
dc.identifier.publicationfirstpage | 1169 | es |
dc.identifier.publicationissue | 5 | es |
dc.identifier.publicationtitle | Remote Sensing | es |
dc.identifier.publicationvolume | 15 | es |
dc.peerreviewed | SI | es |
dc.description.project | European Union’s Horizon 2020 and Innovation Program Marie Skłodowska-Curie - (Grant 956355) | es |
dc.description.project | Junta de Castilla y León y Fondo Europeo de Desarrollo Regional (FEDER) - (projects “CLU‑2019‑01 and CL‑EI‑2021‑05—iuFOR Institute Unit of Excellence”) | es |
dc.description.project | Fondo Europeo de Desarrollo Regional (FEDER), project Interreg COMFOR‑SUDOE - (grant SOE4/P1/E1012) | es |
dc.identifier.essn | 2072-4292 | es |
dc.rights | Atribución 4.0 Internacional | * |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es |
dc.subject.unesco | 3106 Ciencia Forestal | es |
dc.subject.unesco | 3106.08 Silvicultura | es |
dc.subject.unesco | 3308 Ingeniería y Tecnología del Medio Ambiente | es |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
La licencia del ítem se describe como Atribución 4.0 Internacional