Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/64344
Título
IDTxl: The Information Dynamics Toolkit xl: a Python package for the efficient analysis of multivariate information dynamics in networks
Autor
Editorial
Open Journals
Descripción
Producción Científica
Documento Fuente
Wollstadt et al., (2019). IDTxl: The Information Dynamics Toolkit xl: a Python package for the efficient analysis of multivariate information dynamics in networks. Journal of Open Source Software, 4(34), 1081, https://doi.org/10.21105/joss.01081
Resumo
We present IDTxl (the Information Dynamics Toolkit xl), a new open source Python toolbox for effective network inference from multivariate time series using information theory, available from GitHub (https://github.com/pwollstadt/IDTxl).
Information theory (Cover & Thomas, 2006; MacKay, 2003; Shannon, 1948) is the math- ematical theory of information and its transmission over communication channels. In- formation theory provides quantitative measures of the information content of a single random variable (entropy) and of the information shared between two variables (mutual information). The defined measures build on probability theory and solely depend on the probability distributions of the variables involved. As a consequence, the dependence between two variables can be quantified as the information shared between them, without the need to explicitly model a specific type of dependence. Hence, mutual information is a model-free measure of dependence, which makes it a popular choice for the analysis of systems other than communication channels.
ISSN
2475-9066
Revisión por pares
SI
Version del Editor
Idioma
eng
Tipo de versión
info:eu-repo/semantics/draft
Derechos
openAccess
Aparece en las colecciones
Arquivos deste item