Mostrar el registro sencillo del ítem

dc.contributor.authorWalsh, C A
dc.contributor.authorFlorido, R
dc.contributor.authorBailly-Grandvaux, M
dc.contributor.authorSuzuki-Vidal, F
dc.contributor.authorChittenden, J P
dc.contributor.authorCrilly, A J
dc.contributor.authorGigosos, M A
dc.contributor.authorMancini, R C
dc.contributor.authorVlachos, C
dc.contributor.authorMcGuffey, C
dc.contributor.authorBeg, F N
dc.contributor.authorSantos, J J
dc.contributor.authorPérez Callejo, Gabriel 
dc.date.accessioned2024-01-10T16:27:07Z
dc.date.available2024-01-10T16:27:07Z
dc.date.issued2022
dc.identifier.citationPlasma Physics and Controlled Fusion, Enero 2022, vol. 64, p. 025007es
dc.identifier.issn0741-3335es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/64387
dc.description.abstractThis paper uses extended-magnetohydrodynamics (MHD) simulations to explore an extreme mag netized plasma regime realisable by cylindrical implosions on the OMEGA laser facility. This regime is characterized by highly compressed magnetic fields (greater than 10 kT across the fuel), which contain a significant proportion of the implosion energy and induce large electrical currents in the plasma. Parameters governing the different magnetization processes such as Ohmic dissipation and suppression of instabilities by magnetic tension are presented, allowing for optimization of experi ments to study specific phenomena. For instance, a dopant added to the target gas-fill can enhance magnetic flux compression while enabling spectroscopic diagnosis of the imploding core. In par ticular, the use of Ar K-shell spectroscopy is investigated by performing detailed non-LTE atomic kinetics and radiative transfer calculations on the MHD data. Direct measurement of the core elec tron density and temperature would be possible, allowing for both the impact of magnetization on the final temperature and thermal pressure to be obtained. By assuming the magnetic field is frozen into the plasma motion, which is shown to be a good approximation for highly magnetized implo sions, spectroscopic diagnosis could be used to estimate which magnetization processes are ruling the implosion dynamics; for example, a relation is given for inferring whether thermally-driven or current-driven transport is dominating.es
dc.format.mimetypeapplication/pdfes
dc.language.isospaes
dc.publisherInstitute of Physicses
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.titleExploring extreme magnetization phenomena in directly driven imploding cylindrical targetses
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doi10.1088/1361-6587/ac3f25es
dc.identifier.publicationfirstpage025007es
dc.identifier.publicationissue2es
dc.identifier.publicationtitlePlasma Physics and Controlled Fusiones
dc.identifier.publicationvolume64es
dc.peerreviewedSIes
dc.description.projectEste trabajo forma parte del proyecto de investigación PID2019- 108764RB-I00 del Ministerio de Ciencia e Innovación, y de la Research Grant No. GOB-ESP2019-13 de la Universidad de Las Palmas de Gran Canariaes
dc.identifier.essn1361-6587es
dc.rightsAtribución 4.0 Internacional
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersiones


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem