Show simple item record

dc.contributor.authorMerayo Álvarez, Noemí 
dc.contributor.authorVegas Hernández, Jesús María 
dc.contributor.authorLlamas Bello, César 
dc.contributor.authorFernández del Reguero, Patricia
dc.date.accessioned2024-01-14T12:09:19Z
dc.date.available2024-01-14T12:09:19Z
dc.date.issued2023-10-23
dc.identifier.citationApplied Sciences, 2023, vol. 13, n. 20, 11608es
dc.identifier.issn2076-3417es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/64511
dc.descriptionProducción Científicaes
dc.description.abstractThe exponential growth in information on the Internet, particularly within social networks, highlights the importance of sentiment and opinion analysis. The intrinsic characteristics of the Spanish language coupled with the short length and lack of context of messages on social media pose a challenge for sentiment analysis in social networks. In this study, we present a hybrid deep learning model combining convolutional and long short-term memory layers to detect polarity levels in Twitter for the Spanish language. Our model significantly improved the accuracy of existing approaches by up to 20%, achieving accuracies of around 76% for three polarities (positive, negative, neutral) and 91% for two polarities (positive, negative).es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherMDPIes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subject.classificationdeep learninges
dc.subject.classificationhybrid strategieses
dc.subject.classificationsentiment analysises
dc.subject.classificationsocial networkses
dc.subject.classificationTwitteres
dc.subject.classificationSpanishes
dc.titleSocial Network Sentiment Analysis Using Hybrid Deep Learning Modelses
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2023 MDPIes
dc.identifier.doihttps://doi.org/10.3390/app132011608es
dc.relation.publisherversionhttps://www.mdpi.com/2076-3417/13/20/11608es
dc.identifier.publicationfirstpage1es
dc.identifier.publicationissue13es
dc.identifier.publicationlastpage19es
dc.identifier.publicationtitleSocial Network Sentiment Analysis Using Hybrid Deep Learning Modelses
dc.identifier.publicationvolume20es
dc.peerreviewedSIes
dc.rightsAtribución 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record