Mostrar el registro sencillo del ítem

dc.contributor.authorAguiar Pérez, Javier Manuel 
dc.contributor.authorPérez Juárez, María Ángeles 
dc.date.accessioned2024-01-21T19:38:44Z
dc.date.available2024-01-21T19:38:44Z
dc.date.issued2023
dc.identifier.citationSensors Enero 2023, vol. 23, n. 3. p. 1467es
dc.identifier.issn1424-8220es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/64799
dc.descriptionProducción Científicaes
dc.description.abstractSmart grids are able to forecast customers’ consumption patterns, i.e., their energy demand, and consequently electricity can be transmitted after taking into account the expected demand. To face today’s demand forecasting challenges, where the data generated by smart grids is huge, modern data-driven techniques need to be used. In this scenario, Deep Learning models are a good alternative to learn patterns from customer data and then forecast demand for different forecasting horizons. Among the commonly used Artificial Neural Networks, Long Short-Term Memory networks—based on Recurrent Neural Networks—are playing a prominent role. This paper provides an insight into the importance of the demand forecasting issue, and other related factors, in the context of smart grids, and collects some experiences of the use of Deep Learning techniques, for demand forecasting purposes. To have an efficient power system, a balance between supply and demand is necessary. Therefore, industry stakeholders and researchers should make a special effort in load forecasting, especially in the short term, which is critical for demand response.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject.classificationDemand forecastinges
dc.subject.classificationLoad forecastinges
dc.subject.classificationDemand responsees
dc.subject.classificationForecasting horizones
dc.subject.classificationSmart grides
dc.subject.classificationSmart environmentes
dc.subject.classificationDeep learninges
dc.subject.classificationLong short-term memory networkses
dc.subject.classificationConvolutional neural networkses
dc.titleAn insight of deep learning based demand forecasting in smart gridses
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2023 The authorses
dc.identifier.doi10.3390/s23031467es
dc.relation.publisherversionhttps://www.mdpi.com/1424-8220/23/3/1467es
dc.identifier.publicationfirstpage1467es
dc.identifier.publicationissue3es
dc.identifier.publicationtitleSensorses
dc.identifier.publicationvolume23es
dc.peerreviewedSIes
dc.identifier.essn1424-8220es
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco33 Ciencias Tecnológicases


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem