Mostrar el registro sencillo del ítem
dc.contributor.author | Del Pozo Velázquez, Javier | |
dc.contributor.author | Chamorro Posada, Pedro | |
dc.contributor.author | Aguiar Pérez, Javier Manuel | |
dc.contributor.author | Pérez Juárez, María Ángeles | |
dc.contributor.author | Casaseca de la Higuera, Juan Pablo | |
dc.date.accessioned | 2024-01-21T20:36:48Z | |
dc.date.available | 2024-01-21T20:36:48Z | |
dc.date.issued | 2022 | |
dc.identifier.citation | Fractal and Fractional, Noviembre 2022, vol. 6, n. 11. p. 657 | es |
dc.identifier.issn | 2504-3110 | es |
dc.identifier.uri | https://uvadoc.uva.es/handle/10324/64801 | |
dc.description | Producción Científica | es |
dc.description.abstract | Identification and monitoring of existing surface water bodies on the Earth are important in many scientific disciplines and for different industrial uses. This can be performed with the help of high-resolution satellite images that are processed afterwards using data-driven techniques to obtain the desired information. The objective of this study is to establish and validate a method to distinguish efficiently between water and land zones, i.e., an efficient method for surface water detection. In the context of this work, the method used for processing the high-resolution satellite images to detect surface water is based on image segmentation, using the Quadtree algorithm, and fractal dimension. The method was validated using high-resolution satellite images freely available at the OpenAerialMap website. The results show that, when the fractal dimensions of the tiles in which the image is divided after completing the segmentation phase are calculated, there is a clear threshold where water and land can be distinguished. The proposed scheme is particularly simple and computationally efficient compared with heavy artificial-intelligence-based methods, avoiding having any special requirements regarding the source images. Moreover, the average accuracy obtained in the case study developed for surface water detection was 96.03%, which suggests that the adopted method based on fractal dimension is able to detect surface water with a high level of accuracy. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | MDPI | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject.classification | Image segmentation | es |
dc.subject.classification | Fractal dimension | es |
dc.subject.classification | OpenAerialMap | es |
dc.subject.classification | Quadtree | es |
dc.subject.classification | Satellite images | es |
dc.subject.classification | Water detection | es |
dc.title | Water detection in satellite images based on fractal dimension | es |
dc.type | info:eu-repo/semantics/article | es |
dc.rights.holder | © 2023 The authors | es |
dc.identifier.doi | 10.3390/fractalfract6110657 | es |
dc.relation.publisherversion | https://www.mdpi.com/2504-3110/6/11/657/htm | es |
dc.identifier.publicationfirstpage | 657 | es |
dc.identifier.publicationissue | 11 | es |
dc.identifier.publicationtitle | Fractal and Fractional | es |
dc.identifier.publicationvolume | 6 | es |
dc.peerreviewed | SI | es |
dc.description.project | Este trabajo forma parte del proyecto de investigación: PID2020-119418GB-I00 del Ministerio de Ciencia e Innovación | es |
dc.identifier.essn | 2504-3110 | es |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es |
dc.subject.unesco | 33 Ciencias Tecnológicas | es |
dc.subject.unesco | 25 Ciencias de la Tierra y del Espacio | es |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
La licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional