Mostrar el registro sencillo del ítem

dc.contributor.authorMartin Diaz, Ignacio
dc.contributor.authorMoríñigo Sotelo, Daniel 
dc.contributor.authorDuque Pérez, Óscar 
dc.contributor.authorRomero-Troncoso, Rene J.
dc.contributor.authorOsornio Ríos, Roque A.
dc.date.accessioned2024-01-24T08:27:07Z
dc.date.available2024-01-24T08:27:07Z
dc.date.issued2018
dc.identifier.citationISA Transactions, September 2018, 80, 427-438,es
dc.identifier.issn0019-0578es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/64932
dc.description.abstractThis paper investigates the current monitoring for effective fault diagnosis in induction motor (IM) by using random forest (RF) algorithms. A rotor bar breakage of IM does not derive in a catastrophic fault but its timely detection can avoid catastrophic consequences in the stator or prevent malfunctioning of those applications in which this sort of fault is the primary concern. Current-based fault signatures depend enormously on the IM power source and in the load connected to the motor. Hence, homogeneous sets of current signals were acquired through multiple experiments at particular loading torques and IM feedings from an experimental test bench in which incipient rotor severities were considered. Understanding the importance of each fault signature in relation to its diagnosis performance is an interesting matter. To this end, we propose a hybrid approach based on Simulated Annealing algorithm to conduct a global search over the computed feature set for feature selection purposes, which reduce the computational requirements of the diagnosis tool. Then, a novel Oblique RF classifier is used to build multivariate trees, which explicitly learn optimal split directions at internal nodes through penalized Ridge regression. This algorithm has been compared with other state-of-the-art classifiers through careful evaluation of performance measures not encountered in this field.es
dc.format.mimetypeapplication/pdfes
dc.language.isospaes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject.classificationInduction motores
dc.subject.classificationFault diagnosises
dc.subject.classificationArtificial intelligencees
dc.subject.classificationSimulated annealing algorithmes
dc.subject.classificationOblique random forestses
dc.titleHybrid algorithmic approach oriented to incipient rotor fault diagnosis on induction motorses
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doi10.1016/j.isatra.2018.07.033es
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0019057818302891es
dc.identifier.publicationfirstpage427es
dc.identifier.publicationlastpage438es
dc.identifier.publicationtitleISA Transactionses
dc.identifier.publicationvolume80es
dc.peerreviewedSIes
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/submittedVersiones


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem