Mostrar el registro sencillo del ítem

dc.contributor.authorBoulier, François
dc.contributor.authorCano Torres, José María 
dc.contributor.authorFalkensteiner, Sebastian
dc.contributor.authorSendra Pons, Juan Rafael
dc.date.accessioned2024-01-24T13:28:07Z
dc.date.available2024-01-24T13:28:07Z
dc.date.issued2021
dc.identifier.citationCommunications in Computer and Information Science Volume 1414, Pages 89 - 1032021 4th Maple Conference, MC 2020 Waterloo2 November 2020through 6 November 2020. Code 262939es
dc.identifier.issn1865-0929es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/64971
dc.descriptionProducción Científicaes
dc.description.abstractThere exist several methods for computing exact solutions of algebraic differential equations. Most of the methods, however, do not ensure existence and uniqueness of the solutions and might fail after several steps, or are restricted to linear equations. The authors have presented in previous works a method to overcome this problem for autonomous first order algebraic ordinary differential equations and formal Puiseux series solutions and algebraic solutions. In the first case, all solutions can uniquely be represented by a sufficiently large truncation and in the latter case by its minimal polynomial. The main contribution of this paper is the implementation, in a MAPLE package named FirstOrderSolve, of the algorithmic ideas presented therein. More precisely, all formal Puiseux series and algebraic solutions, including the generic and singular solutions, are computed and described uniquely. The computation strategy is to reduce the given differential equation to a simpler one by using local parametrizations and the already known degree bounds.es
dc.format.mimetypeapplication/pdfes
dc.language.isospaes
dc.publisherSpringer Science and Business Media Deutschland GmbHes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.subjectMatemáticases
dc.subject.classificationMaple Symbolic computation Algebraic differential equation Formal Puiseux series solution Algebraic solutiones
dc.titlePuiseux Series and Algebraic Solutions of First Order Autonomous AODEs – A MAPLE Packagees
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doi10.1007/978-3-030-81698-8_7es
dc.relation.publisherversionhttps://link.springer.com/chapter/10.1007/978-3-030-81698-8_7es
dc.identifier.publicationfirstpage89es
dc.identifier.publicationlastpage103es
dc.identifier.publicationvolume1414es
dc.peerreviewedSIes
dc.description.projectBilateral project ANR-17-CE40-0036 and DFG-391322026 SYMBIONTes
dc.description.projectMinisterio de Ciencia, Innovación y Agencia Estatal de Investigación Grant PID2019-105621GB-I00es
dc.description.projectFEDER/Ministerio de Ciencia, Innovación y Universidades Agencia Estatal de Investigación/MTM2017-88796-Pes
dc.description.projectAustrian Science Fund (FWF): P 31327-N32es
dc.identifier.essn1865-0937es
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersiones
dc.subject.unesco1201 Álgebraes
dc.subject.unesco1204 Geometríaes
dc.subject.unesco1203 Ciencia de Los Ordenadoreses


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem