Mostrar el registro sencillo del ítem

dc.contributor.authorBaladrón García, Carlos 
dc.contributor.authorSantos Lozano, Alejandro
dc.contributor.authorAguiar Pérez, Javier Manuel 
dc.contributor.authorLucía, Alejandro
dc.contributor.authorMartín Hernández, Juan
dc.date.accessioned2024-01-26T11:08:05Z
dc.date.available2024-01-26T11:08:05Z
dc.date.issued2018
dc.identifier.citationJournal of the American Medical Informatics Association, Febrero 2018, vol. 25, n. 7. p. 774-779.es
dc.identifier.issn1067-5027es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/65066
dc.descriptionProducción Científicaes
dc.description.abstractThe most used search engine for scientific literature, PubMed, provides tools to filter results by several fields. When searching for reports on clinical trials, sample size can be among the most important factors to consider. However, PubMed does not currently provide any means of filtering search results by sample size. Such a filtering tool would be useful in a variety of situations, including meta-analyses or state-of-the-art analyses to support experimental therapies. In this work, a tool was developed to filter articles identified by PubMed based on their reported sample sizes. A search engine was designed to send queries to PubMed, retrieve results, and compute estimates of reported sample sizes using a combination of syntactical and machine learning methods. The sample size search tool is publicly available for download at http://ihealth.uemc.es. Its accuracy was assessed against a manually annotated database of 750 random clinical trials returned by PubMed. Results Validation tests show that the sample size search tool is able to accurately (1) estimate sample size for 70% of abstracts and (2) classify 85% of abstracts into sample size quartiles. The proposed tool was validated as useful for advanced PubMed searches of clinical trials when the user is interested in identifying trials of a given sample size.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherOxford University Presses
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses
dc.subject.classificationText mininges
dc.subject.classificationClinical triales
dc.subject.classificationKnowledge discoveryes
dc.subject.classificationSample sizees
dc.titleTool for filtering PubMed search results by sample sizees
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2018 The Authorses
dc.identifier.doi10.1093/JAMIA/OCX155es
dc.relation.publisherversionhttps://academic.oup.com/jamia/article/25/7/774/4835460es
dc.identifier.publicationfirstpage774es
dc.identifier.publicationissue7es
dc.identifier.publicationlastpage779es
dc.identifier.publicationtitleJournal of the American Medical Informatics Associationes
dc.identifier.publicationvolume25es
dc.peerreviewedSIes
dc.description.projectEste trabajo está financiado por el Fondo de Investigaciones Sanitarias (Grant # PI15/00558) y cofinanciado por Fondos FEDERes
dc.identifier.essn1527-974Xes
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersiones
dc.subject.unesco32 Ciencias Médicases
dc.subject.unesco33 Ciencias Tecnológicases


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem