dc.contributor.author | Ortega, Pablo | |
dc.contributor.author | Barrientos Benito, María Carmen | |
dc.contributor.author | Redondo Cristóbal, María del Pilar | |
dc.contributor.author | Largo Cabrerizo, Antonio | |
dc.contributor.author | Alonso Hernández, José Luis | |
dc.contributor.author | Sanz Novo, Miguel | |
dc.date.accessioned | 2024-01-29T11:14:16Z | |
dc.date.available | 2024-01-29T11:14:16Z | |
dc.date.issued | 2022 | |
dc.identifier.citation | The Astrophysical Journal, 941:40 (11pp), 2022 December 10 | es |
dc.identifier.issn | 0004-637X | es |
dc.identifier.uri | https://uvadoc.uva.es/handle/10324/65167 | |
dc.description | Producción Científica | es |
dc.description.abstract | The investigation of metal-containing interstellar molecules stands as a prolific field for current astrochemical
research. However, the search for many of these systems in the interstellar medium has remained inaccessible to
date due to the lack of preliminary spectroscopic data. In this context, pioneering theoretical studies have inspired
quantum chemists to study new appealing candidates to enable their subsequent search in space. The aim of this
study is to provide high-level theoretical spectroscopic signatures of the tetratomic system [Na, N, C, O]. We have
performed a thorough exploration of its potential energy surface employing different state-of-the-art quantum
chemical methods and nine different species have been characterized. Moreover, we have evaluated the stability of
the most stable isomers against dissociation and explored their main isomerization processes. We therefore suggest
sodium isocyanate (NaNCO,1Σ) and sodium cyanate, (NaOCN, 1Σ) as the most relevant candidates for laboratory
and interstellar detection. To aid in their eventual spectral search by means of rotational spectroscopy, we report a
complete set of the required spectroscopic parameters including the nuclear quadrupole coupling constants, which
are needed to interpret their complex hyperfine structure. NaNCO and NaOCN present exceptionally high values of
the electric dipole moment (11.4 and 13.6 Debyes, respectively at the CCSD(T,rw)/aug-cc-pVTZ level), which
strongly support to perform an eventual radio astronomical search. Furthermore, both isomers exhibit rather small
vibrational frequencies, which indicates that these species are certainly floppy molecules. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | American Astronomical Society | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject.classification | Astrochemistry (75) | es |
dc.subject.classification | Interstellar medium (847) | es |
dc.subject.classification | Molecular data (2259) | es |
dc.subject.classification | Computational methods (1965) | es |
dc.title | Structure and Spectroscopic Signatures of Interstellar Sodium Isocyanate Isomers | es |
dc.type | info:eu-repo/semantics/article | es |
dc.rights.holder | © 2022. The Author(s). Published by the American Astronomical Society. | es |
dc.identifier.doi | 10.3847/1538-4357/ac9f35 | es |
dc.relation.publisherversion | https://doi.org/10.3847/1538-4357/ac9f35 | es |
dc.identifier.publicationfirstpage | 40 | es |
dc.identifier.publicationissue | 1 | es |
dc.identifier.publicationtitle | The Astrophysical Journal | es |
dc.identifier.publicationvolume | 941 | es |
dc.peerreviewed | SI | es |
dc.identifier.essn | 1538-4357 | es |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es |