• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parcourir

    Tout UVaDOCCommunautésPar date de publicationAuteursSujetsTitres

    Mon compte

    Ouvrir une session

    Statistiques

    Statistiques d'usage de visualisation

    Compartir

    Voir le document 
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Matemática Aplicada
    • DEP51 - Artículos de revista
    • Voir le document
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Matemática Aplicada
    • DEP51 - Artículos de revista
    • Voir le document
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/65405

    Título
    Square matrices with the inverse diagonal property
    Autor
    Furtado, Susana
    Johnson, Charles R.
    Marijuán, Carlos
    Pisonero Pérez, MiriamAutoridad UVA Orcid
    Año del Documento
    2023
    Editorial
    Elsevier
    Descripción
    Producción Científica
    Documento Fuente
    Kuwait Journal of Science
    Résumé
    We identify the class of real square invertible matrices A for which the signs of the diagonal entries of A 1 match those of A, and begin their study. We say such matrices have the inverse diagonal property (IDP). This class includes many important classes: the positive definite matrices, the M-matrices, the totally positive matrices and some variants, the P-matrices, the diagonally dominant and H-matrices and their inverse classes, as well as triangular matrices. This class is closed under any real invertible diagonal multiplication on either the right or the left. So questions about this class can be reduced to the case of positive diagonal entries. Other basic properties are given. One theme is what conditions need be added to the IDP to insure membership in a familiar class. For example, the positive definite matrices are characterized as certain IDP matrices with special conditions on certain particular principal minors. The tridiagonal case is highlighted. Certain specially simple conditions on such matrices are mentioned that ensure them to be P-matrices, positive definite matrices or M-matrices. We also note that recent results about the invertibility of weakly diagonally dominant matrices are used. Examples are given throughout the paper.
    Palabras Clave
    Diagonal entries
    Inverse
    M-matrix
    Positive definite
    Principal minors
    Totally Positive
    Triangular
    Tridiagonal
    ISSN
    2307-4108 (Print) 2307-4116 (Online)
    Revisión por pares
    SI
    DOI
    10.1016/j.kjs.2023.09.001
    Patrocinador
    FCT- Fundaç~ao para a Ci^encia e Tecnologia, under project UIDB/04721/2020
    PGC2018-096446-B-C21 funded by MCIN/AEI/10.13039/ 501100011033, “ERDF A way of making Europe
    PID2021-122501NB-I00
    GIR TAAMC from UVa
    Version del Editor
    https://doi.org/10.1016/j.kjs.2023.09.001
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/65405
    Tipo de versión
    info:eu-repo/semantics/acceptedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP51 - Artículos de revista [145]
    Afficher la notice complète
    Fichier(s) constituant ce document
    Nombre:
    1-s2.0-S2307410823001505-main.pdf
    Tamaño:
    227.0Ko
    Formato:
    Adobe PDF
    Thumbnail
    Voir/Ouvrir

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10