Mostrar el registro sencillo del ítem

dc.contributor.authorCano Torres, José María 
dc.contributor.authorFortuny Ayuso, Pedro
dc.date.accessioned2024-02-01T13:44:27Z
dc.date.available2024-02-01T13:44:27Z
dc.date.issued2022
dc.identifier.citationQual. Theory Dyn. Syst. 21, 123 (2022).es
dc.identifier.issn1575-5460es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/65523
dc.description.abstractAdapting the Newton–Puiseux Polygon process to nonlinear q-difference equations of any order and degree, we compute their power series solutions, study the properties of the set of exponents of the solutions and give a bound for their q-Gevrey order in terms of the order of the original equation.es
dc.format.mimetypeapplication/pdfes
dc.language.isospaes
dc.publisherBirkhauseres
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/*
dc.subjectMatemáticases
dc.subject.classificationPower series solutionses
dc.subject.classificationq-difference equationses
dc.subject.classificationNewton polygon methodes
dc.titlePower Series Solutions of Non-linear q-Difference Equations and the Newton–Puiseux Polygones
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doi10.1007/s12346-022-00656-0es
dc.relation.publisherversionhttps://link.springer.com/article/10.1007/s12346-022-00656-0es
dc.identifier.publicationissue4es
dc.identifier.publicationtitleQualitative Theory of Dynamical Systemses
dc.identifier.publicationvolume21es
dc.peerreviewedSIes
dc.description.projectFEDER/Ministerio de Ciencia, Innovación y Agencia Estatal de Investigación Grant PID2019-105621GB-I00es
dc.identifier.essn1662-3592es
dc.rightsAtribución-NoComercial-CompartirIgual 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco1204 Geometríaes
dc.subject.unesco1201 Álgebraes


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem