Show simple item record

dc.contributor.authorGutierrez Tobal, Gonzalo César 
dc.contributor.authorÁlvarez González, Daniel 
dc.contributor.authorCampo Matias, Félix del 
dc.contributor.authorHornero Sánchez, Roberto 
dc.date.accessioned2024-02-02T16:00:25Z
dc.date.available2024-02-02T16:00:25Z
dc.date.issued2016
dc.identifier.citationIEEE Transactions on Biomedical Engineering, 2016, vol. 63, n. 3, p. 636-646.es
dc.identifier.issn0018-9294es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/65595
dc.descriptionProducción Científicaes
dc.description.abstractGoal: The purpose of this study is to evaluate the usefulness of the boosting algorithm AdaBoost (AB) in the context of the sleep apnea-hypopnea syndrome (SAHS) diagnosis. Methods: We characterize SAHS in single-channel airflow (AF) signals from 317 subjects by the extraction of spectral and nonlinear features. Relevancy and redundancy analyses are conducted through the fast correlation-based filter to derive the optimum set of features among them. These are used to feed classifiers based on linear discriminant analysis (LDA) and classification and regression trees (CART). LDA and CART models are sequentially obtained through AB, which combines their performances to reach higher diagnostic ability than each of them separately. Results: Our AB-LDA and AB-CART approaches showed high diagnostic performance when determining SAHS and its severity. The assessment of different apnea-hypopnea index cutoffs using an independent test set derived into high accuracy: 86.5% (5 events/h), 86.5% (10 events/h), 81.0% (15 events/h), and 83.3% (30 events/h). These results widely outperformed those from logistic regression and a conventional event-detection algorithm applied to the same database. Conclusion: Our results suggest that AB applied to data from single-channel AF can be useful to determine SAHS and its severity. Significance: SAHS detection might be simplified through the only use of single-channel AF data.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)es
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.classificationAdaBoost (AB)
dc.subject.classificationairflow (AF)
dc.subject.classificationsleep apnea-hypopnea syndrome (SAHS)
dc.subject.classificationspectral analysis
dc.subject.classificationnonlinear analysis
dc.titleUtility of AdaBoost to detect sleep apnea-hypopnea syndrome from single-channel airflowes
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2015 IEEEes
dc.identifier.doi10.1109/TBME.2015.2467188es
dc.relation.publisherversionhttps://ieeexplore.ieee.org/document/7185342es
dc.identifier.publicationfirstpage636es
dc.identifier.publicationissue3es
dc.identifier.publicationlastpage646es
dc.identifier.publicationtitleIEEE Transactions on Biomedical Engineeringes
dc.identifier.publicationvolume63es
dc.peerreviewedSIes
dc.description.projectThis work was supported by the Proyecto Cero 2011 on Ageing from Fundación General CSIC, the project TEC2011-22987 from Ministerio de Economía y Competitividad, the project VA059U13 from the Consejería de Educación de la Junta de Castilla y León, and FEDER. The work of G. C. Gutiérrez-Tobal was supported by a PIRTU grant from the Consejería de Educación de la Junta de Castilla y León and the European Social Fund.es
dc.identifier.essn1558-2531es
dc.rightsAtribución-NoComercial-SinDerivados 4.0 Internacional
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersiones


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record