Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/65618
Título
How to avoid order reduction when Lawson methods integrate nonlinear initial boundary value problems
Autor
Año del Documento
2022
Editorial
Springer Link
Documento Fuente
BIT Numerical Mathematics, 2022, Volume 62, pages 431–463.
Résumé
It is well known that Lawson methods suffer from a severe order reduction when
integrating initial boundary value problems where the solutions are not periodic in
space or do not satisfy enough conditions of annihilation on the boundary. However,
in a previous paper, a modification of Lawson quadrature rules has been suggested
so that no order reduction turns up when integrating linear problems subject to timedependent
boundary conditions. In this paper, we describe and thoroughly analyse a
technique to avoid also order reduction when integrating nonlinear problems. This is
very useful because, given any Runge–Kutta method of any classical order, a Lawson
method can be constructed associated to it for which the order is conserved.
Revisión por pares
SI
Patrocinador
Este trabajo ha sido financiado por el Ministerio de Ciencia e Innovación y Regional Development European Funds a través del proyecto PGC2018-101443-B-I00 y por la Junta de Castilla y León y Feder a través de los proyectos VA169P20
Idioma
eng
Tipo de versión
info:eu-repo/semantics/draft
Derechos
openAccess
Aparece en las colecciones
Fichier(s) constituant ce document