Mostrar el registro sencillo del ítem
dc.contributor.author | Cisnal de la Rica, Ana | |
dc.contributor.author | Pérez Turiel, Javier | |
dc.contributor.author | Fraile Marinero, Juan Carlos | |
dc.contributor.author | Sierra, David | |
dc.contributor.author | Fuente López, Eusebio de la | |
dc.date.accessioned | 2024-02-05T17:03:49Z | |
dc.date.available | 2024-02-05T17:03:49Z | |
dc.date.issued | 2021 | |
dc.identifier.citation | "RobHand: A Hand Exoskeleton With Real-Time EMG-Driven Embedded Control. Quantifying Hand Gesture Recognition Delays for Bilateral Rehabilitation," in IEEE Access, vol. 9, pp. 137809-137823, 2021, doi: 10.1109/ACCESS.2021.3118281. | es |
dc.identifier.uri | https://uvadoc.uva.es/handle/10324/65759 | |
dc.description | Producción Científica | es |
dc.description.abstract | Assisted bilateral rehabilitation has been proven to help patients improve their paretic limb ability and promote motor recovery, especially in upper limbs, after suffering a cerebrovascular accident (ACV). Robotic-assisted bilateral rehabilitation based on sEMG-driven control has been previously addressed in other studies to improve hand mobility; however, low-cost embedded solutions for the real-time bio-cooperative control of robotic rehabilitation platforms are lacking. This paper presents the RobHand (Robot for Hand Rehabilitation) system, which is an exoskeleton that supports EMG-driven assisted bilateral by using a custom-made low-cost EMG real-time embedded solution. A threshold non-pattern recognition EMG-driven control for RobHand has been developed, and it detects hand gestures of the healthy hand and replicates the gesture on the exoskeleton placed on the paretic hand. A preliminary study with ten healthy subjects is conducted to evaluate the performance in reliability, tracking accuracy and response time of the proposed EMG-driven control strategy using the EMG real-time embedded solution, and the findings could be extrapolated to stroke patients. A systematic review has been carried out to compare the results of the study, which present a 97% of overall accuracy for the detection of hand gestures and indicate the adequate time responsiveness of the system. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | IEEE Access | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject.classification | Electromyography; Exoskeletons; Training;Stroke (medical condition); Real-time systems; Medical treatment; Robot sensing systems; Electromyography; embedded software; exoskeletons; real-time systems; rehabilitation robotics | es |
dc.title | RobHand: A Hand Exoskeleton With Real-Time EMG-Driven Embedded Control. Quantifying Hand Gesture Recognition Delays for Bilateral Rehabilitation | es |
dc.type | info:eu-repo/semantics/article | es |
dc.identifier.doi | 10.1109/ACCESS.2021.3118281 | es |
dc.relation.publisherversion | https://ieeexplore.ieee.org/document/9562297 | es |
dc.identifier.publicationfirstpage | 137809 | es |
dc.identifier.publicationlastpage | 137823 | es |
dc.identifier.publicationtitle | IEEE Access | es |
dc.identifier.publicationvolume | 9 | es |
dc.peerreviewed | SI | es |
dc.identifier.essn | 2169-3536 | es |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
La licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional