Mostrar el registro sencillo del ítem

dc.contributor.authorCisnal de la Rica, Ana
dc.contributor.authorPérez Turiel, Javier 
dc.contributor.authorFraile Marinero, Juan Carlos 
dc.contributor.authorSierra, David
dc.contributor.authorFuente López, Eusebio de la 
dc.date.accessioned2024-02-05T17:03:49Z
dc.date.available2024-02-05T17:03:49Z
dc.date.issued2021
dc.identifier.citation"RobHand: A Hand Exoskeleton With Real-Time EMG-Driven Embedded Control. Quantifying Hand Gesture Recognition Delays for Bilateral Rehabilitation," in IEEE Access, vol. 9, pp. 137809-137823, 2021, doi: 10.1109/ACCESS.2021.3118281.es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/65759
dc.descriptionProducción Científicaes
dc.description.abstractAssisted bilateral rehabilitation has been proven to help patients improve their paretic limb ability and promote motor recovery, especially in upper limbs, after suffering a cerebrovascular accident (ACV). Robotic-assisted bilateral rehabilitation based on sEMG-driven control has been previously addressed in other studies to improve hand mobility; however, low-cost embedded solutions for the real-time bio-cooperative control of robotic rehabilitation platforms are lacking. This paper presents the RobHand (Robot for Hand Rehabilitation) system, which is an exoskeleton that supports EMG-driven assisted bilateral by using a custom-made low-cost EMG real-time embedded solution. A threshold non-pattern recognition EMG-driven control for RobHand has been developed, and it detects hand gestures of the healthy hand and replicates the gesture on the exoskeleton placed on the paretic hand. A preliminary study with ten healthy subjects is conducted to evaluate the performance in reliability, tracking accuracy and response time of the proposed EMG-driven control strategy using the EMG real-time embedded solution, and the findings could be extrapolated to stroke patients. A systematic review has been carried out to compare the results of the study, which present a 97% of overall accuracy for the detection of hand gestures and indicate the adequate time responsiveness of the system.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherIEEE Accesses
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject.classificationElectromyography; Exoskeletons; Training;Stroke (medical condition); Real-time systems; Medical treatment; Robot sensing systems; Electromyography; embedded software; exoskeletons; real-time systems; rehabilitation roboticses
dc.titleRobHand: A Hand Exoskeleton With Real-Time EMG-Driven Embedded Control. Quantifying Hand Gesture Recognition Delays for Bilateral Rehabilitationes
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doi10.1109/ACCESS.2021.3118281es
dc.relation.publisherversionhttps://ieeexplore.ieee.org/document/9562297es
dc.identifier.publicationfirstpage137809es
dc.identifier.publicationlastpage137823es
dc.identifier.publicationtitleIEEE Accesses
dc.identifier.publicationvolume9es
dc.peerreviewedSIes
dc.identifier.essn2169-3536es
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem