Mostrar el registro sencillo del ítem

dc.contributor.authorTomić, Zoran
dc.contributor.authorJarak, Tomislav
dc.contributor.authorLesičar, Tomislav
dc.contributor.authorGubeljak, Nenad
dc.contributor.authorTonković, Zdenko
dc.date.accessioned2024-02-06T12:36:19Z
dc.date.available2024-02-06T12:36:19Z
dc.date.issued2023
dc.identifier.citationMaterials, 2023, Vol. 16, Nº. 11, 4174es
dc.identifier.issn1996-1944es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/65822
dc.descriptionProducción Científicaes
dc.description.abstractPorosity in sintered materials negatively affects its fatigue properties. In investigating its influence, the application of numerical simulations reduces experimental testing, but they are computationally very expensive. In this work, the application of a relatively simple numerical phase-field (PF) model for fatigue fracture is proposed for estimation of the fatigue life of sintered steels by analysis of microcrack evolution. A model for brittle fracture and a new cycle skipping algorithm are used to reduce computational costs. A multiphase sintered steel, consisting of bainite and ferrite, is examined. Detailed finite element models of the microstructure are generated from high-resolution metallography images. Microstructural elastic material parameters are obtained using instrumented indentation, while fracture model parameters are estimated from experimental S–N curves. Numerical results obtained for monotonous and fatigue fracture are compared with data from experimental measurements. The proposed methodology is able to capture some important fracture phenomena in the considered material, such as the initiation of the first damage in the microstructure, the forming of larger cracks at the macroscopic level, and the total life in a high cycle fatigue regime. However, due to the adopted simplifications, the model is not suitable for predicting accurate and realistic crack patterns of microcracks.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherMDPIes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectMetalses
dc.subjectMetallic Materialses
dc.subjectMetales - Materialeses
dc.subjectMaterials sciencees
dc.subjectCiencia de los materialeses
dc.subjectMicrocrackses
dc.subjectFatiguees
dc.subjectMateriales - Fatigaes
dc.subjectMetales - Fatigaes
dc.subjectPhase field methodes
dc.subjectPorosityes
dc.subjectPorosidades
dc.titleModelling of fatigue microfracture in porous sintered steel using a phase-field methodes
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2023 The authorses
dc.identifier.doi10.3390/ma16114174es
dc.relation.publisherversionhttps://www.mdpi.com/1996-1944/16/11/4174es
dc.identifier.publicationfirstpage4174es
dc.identifier.publicationissue11es
dc.identifier.publicationtitleMaterialses
dc.identifier.publicationvolume16es
dc.peerreviewedSIes
dc.description.projectFundación Científica de Croacia - (project MultiSintAge, PZS-1 2019-02-4177)es
dc.identifier.essn1996-1944es
dc.rightsAtribución 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco2303.18 Metaleses
dc.subject.unesco3312 Tecnología de Materialeses


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem