Show simple item record

dc.contributor.authorO’Dwyer, Samantha C.
dc.contributor.authorPalacio, Stephanie
dc.contributor.authorMatsumoto, Collin
dc.contributor.authorGuarina, Laura
dc.contributor.authorKlug, Nicholas R.
dc.contributor.authorTajada, Sendoa
dc.contributor.authorRosati, Barbara
dc.contributor.authorMcKinnon, David
dc.contributor.authorTrimmer, James S.
dc.contributor.authorSantana, L. Fernando
dc.date.accessioned2024-02-06T12:42:14Z
dc.date.available2024-02-06T12:42:14Z
dc.date.issued2020
dc.identifier.citationProc Natl Acad Sci U S A. 2020 Feb 18;117(7):3858-3866.es
dc.identifier.issn0027-8424es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/65825
dc.description.abstractThe accepted role of the protein Kv2.1 in arterial smooth muscle cells is to form K+ channels in the sarcolemma. Opening of Kv2.1 channels causes membrane hyperpolarization, which decreases the activity of L-type CaV1.2 channels, lowering intracellular Ca2+ ([Ca2+]i) and causing smooth muscle relaxation. A limitation of this model is that it is based exclusively on data from male arterial myocytes. Here, we used a combination of electrophysiology as well as imaging approaches to investigate the role of Kv2.1 channels in male and female arterial myocytes. We confirmed that Kv2.1 plays a canonical conductive role but found it also has a structural role in arterial myocytes to enhance clustering of CaV1.2 channels. Less than 1% of Kv2.1 channels are conductive and induce membrane hyperpolarization. Paradoxically, by enhancing the structural clustering and probability of CaV1.2-CaV1.2 interactions within these clusters, Kv2.1 increases Ca2+ influx. These functional impacts of Kv2.1 depend on its level of expression, which varies with sex. In female myocytes, where expression of Kv2.1 protein is higher than in male myocytes, Kv2.1 has conductive and structural roles. Female myocytes have larger CaV1.2 clusters, larger [Ca2+]i, and larger myogenic tone than male myocytes. In contrast, in male myocytes, Kv2.1 channels regulate membrane potential but not CaV1.2 channel clustering. We propose a model in which Kv2.1 function varies with sex: in males, Kv2.1 channels control membrane potential but, in female myocytes, Kv2.1 plays dual electrical and CaV1.2 clustering roles. This contributes to sex-specific regulation of excitability, [Ca2+]i, and myogenic tone in arterial myocytes.es
dc.format.mimetypeapplication/pdfes
dc.language.isospaes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.titleKv2.1 channels play opposing roles in regulating membrane potential, Ca 2+ channel function, and myogenic tone in arterial smooth musclees
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doi10.1073/pnas.1917879117es
dc.identifier.publicationfirstpage3858es
dc.identifier.publicationissue7es
dc.identifier.publicationlastpage3866es
dc.identifier.publicationtitleProceedings of the National Academy of Scienceses
dc.identifier.publicationvolume117es
dc.peerreviewedSIes
dc.identifier.essn1091-6490es
dc.type.hasVersioninfo:eu-repo/semantics/draftes


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record