Mostrar el registro sencillo del ítem

dc.contributor.authorSantamaría Vázquez, Eduardo
dc.contributor.authorMartínez Cagigal, Víctor
dc.contributor.authorVaquerizo Villar, Fernando 
dc.contributor.authorHornero, Roberto
dc.date.accessioned2024-02-08T11:21:15Z
dc.date.available2024-02-08T11:21:15Z
dc.date.issued2020-12-30
dc.identifier.citationIEEE Transactions on Neural Systems and Rehabilitation Engineering, Diciembre, 2020, vol. 28 (12), pp. 2773 - 2782.es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/65991
dc.description.abstractIn recent years, deep-learning models gained attention for electroencephalography (EEG) classification tasks due to their excellent performance and ability to extract complex features from raw data. In particular, convolutional neural networks (CNN) showed adequate results in brain-computer interfaces (BCI) based on different control signals, including event-related potentials (ERP). In this study, we propose a novel CNN, called EEG-Inception, that improves the accuracy and calibration time of assistive ERP-based BCIs. To the best of our knowledge, EEG-Inception is the first model to integrate Inception modules for ERP detection, which combined efficiently with other structures in a light architecture, improved the performance of our approach. The model was validated in a population of 73 subjects, of which 31 present motor disabilities. Results show that EEG-Inception outperforms 5 previous approaches, yielding significant improvements for command decoding accuracy up to 16.0%, 10.7%, 7.2%, 5.7% and 5.1% in comparison to rLDA, xDAWN + Riemannian geometry, CNN-BLSTM, DeepConvNet and EEGNet, respectively. Moreover, EEG-Inception requires very few calibration trials to achieve state-of-the-art performances taking advantage of a novel training strategy that combines cross-subject transfer learning and fine-tuning to increase the feasibility of this approach for practical use in assistive applications.es
dc.format.mimetypeapplication/pdfes
dc.language.isospaes
dc.publisherIEEEes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject.classificationBrain-computer interfaceses
dc.subject.classificationEvent-related potentialses
dc.subject.classificationP300es
dc.subject.classificationDeep learninges
dc.subject.classificationConvolutional Neural Networkses
dc.subject.classificationInceptiones
dc.subject.classificationTransfer learninges
dc.titleEEG-Inception: A Novel Deep Convolutional Neural Network for Assistive ERP-Based Brain-Computer Interfaceses
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doihttps://doi.org/10.1109/TNSRE.2020.3048106es
dc.relation.publisherversionhttps://doi.org/10.1109/TNSRE.2020.3048106es
dc.identifier.publicationfirstpage2773es
dc.identifier.publicationissue12es
dc.identifier.publicationlastpage2782es
dc.identifier.publicationtitleEEG-Inception: A Novel Deep Convolutional Neural Network for Assistive ERP-Based Brain-Computer Interfaceses
dc.identifier.publicationvolume28es
dc.peerreviewedSIes
dc.description.projectDPI2017-84280-R, 0378_AD_EEGWA_2_Pes
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersiones


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem