Mostrar el registro sencillo del ítem

dc.contributor.authorPérez-Romero, Álvaro
dc.contributor.authorMateo Romero, Héctor Felipe
dc.contributor.authorGallardo-Saavedra, Sara 
dc.contributor.authorAlonso-Gómez, Víctor
dc.contributor.authorAlonso-García, María del Carmen
dc.contributor.authorHernández Callejo, Luis 
dc.date.accessioned2024-02-08T11:25:24Z
dc.date.available2024-02-08T11:25:24Z
dc.date.issued2021
dc.identifier.citationPérez-Romero, Á.; Mateo-Romero, H.F.; Gallardo-Saavedra, S.; Alonso-Gómez, V.; Alonso-García, M.d.C.; Hernández-Callejo, L. Evaluation of Artificial Intelligence-Based Models for Classifying Defective Photovoltaic Cells. Appl. Sci. 2021, 11, 4226. https://doi.org/10.3390/app11094226es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/65994
dc.description.abstractSolar Photovoltaic (PV) energy has experienced an important growth and prospect during the last decade due to the constant development of the technology and its high reliability, together with a drastic reduction in costs. This fact has favored both its large-scale implementation and small-scale Distributed Generation (DG). PV systems integrated into local distribution systems are considered to be one of the keys to a sustainable future built environment in Smart Cities (SC). Advanced Operation and Maintenance (O&M) of solar PV plants is necessary. Powerful and accurate data are usually obtained on-site by means of current-voltage (I-V) curves or electroluminescence (EL) images, with new equipment and methodologies recently proposed. In this work, authors present a comparison between five AI-based models to classify PV solar cells according to their state, using EL images at the PV solar cell level, while the cell I-V curves are used in the training phase to be able to classify the cells based on its production efficiency. This automatic classification of defective cells enormously facilitates the identification of defects for PV plant operators, decreasing the human labor and optimizing the defect location. In addition, this work presents a methodology for the selection of important variables for the training of a defective cell classifier.es
dc.format.mimetypeapplication/pdfes
dc.language.isospaes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.titleEvaluation of Artificial Intelligence-Based Models for Classifying Defective Photovoltaic Cellses
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doi10.3390/app11094226es
dc.identifier.publicationfirstpage4226es
dc.identifier.publicationissue9es
dc.identifier.publicationtitleApplied Scienceses
dc.identifier.publicationvolume11es
dc.peerreviewedSIes
dc.identifier.essn2076-3417es
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem