Mostrar el registro sencillo del ítem

dc.contributor.authorMateo Romero, Héctor Felipe
dc.contributor.authorCarbonó de la Rosa, Mario Eduardo
dc.contributor.authorHernández Callejo, Luis 
dc.contributor.authorGonzález Rebollo, Miguel Ángel 
dc.contributor.authorCardeñoso Payo, Valentín 
dc.contributor.authorAlonso Gómez, Víctor 
dc.contributor.authorGallardo Saavedra, Sara 
dc.date.accessioned2024-02-08T11:35:16Z
dc.date.available2024-02-08T11:35:16Z
dc.date.issued2024
dc.identifier.citationMateo-Romero, H.F. et al. (2024). Enhancing Solar Cell Classification Using Mamdani Fuzzy Logic Over Electroluminescence Images: A Comparative Analysis with Machine Learning Methods. In: Nesmachnow, S., Hernández Callejo, L. (eds) Smart Cities. ICSC-Cities 2023. Communications in Computer and Information Science, vol 1938. Springer, Cham. https://doi.org/10.1007/978-3-031-52517-9_11es
dc.identifier.issn1865-0929es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/66000
dc.description.abstractThis work presents a Mamdani Fuzzy Logic model capable of classifying solar cells according to their energetic performance. The model has 3 different inputs: The proportion of black pixels, gray pixels, and white pixels. One additional output for informing of possible bad inputs is also provided. The three values are obtained from an Electroluminescence image of the cell. The model has been developed using cells whose performance has been obtained by measuring the Intensity-Voltage Curves of the cells. The performance of the model has been shown by testing it with a validation set, obtaining a 99.0% of accuracy, when other methods such as Ensemble Classifiers and Decision Trees obtain a 97.7%. This shows that the presented model is capable of solving the problem better than traditional Machine Learning methods.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.subject.classificationFuzzy Logic
dc.subject.classificationPhotovoltaic
dc.subject.classificationElectroluminescence
dc.subject.classificationMachine Learning
dc.titleEnhancing solar cell classification using mamdani fuzzy logic over electroluminescence images: A comparative analysis with machine learning methodses
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doi10.1007/978-3-031-52517-9_11es
dc.identifier.publicationfirstpage159es
dc.identifier.publicationlastpage173es
dc.identifier.publicationvolume1938es
dc.peerreviewedSIes
dc.identifier.essn1865-0937es
dc.type.hasVersioninfo:eu-repo/semantics/draftes


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem