Mostrar el registro sencillo del ítem
dc.contributor.author | Mateo Romero, Héctor Felipe | |
dc.contributor.author | Carbonó de la Rosa, Mario Eduardo | |
dc.contributor.author | Hernández Callejo, Luis | |
dc.contributor.author | González Rebollo, Miguel Ángel | |
dc.contributor.author | Cardeñoso Payo, Valentín | |
dc.contributor.author | Alonso Gómez, Víctor | |
dc.contributor.author | Gallardo Saavedra, Sara | |
dc.date.accessioned | 2024-02-08T11:35:16Z | |
dc.date.available | 2024-02-08T11:35:16Z | |
dc.date.issued | 2024 | |
dc.identifier.citation | Mateo-Romero, H.F. et al. (2024). Enhancing Solar Cell Classification Using Mamdani Fuzzy Logic Over Electroluminescence Images: A Comparative Analysis with Machine Learning Methods. In: Nesmachnow, S., Hernández Callejo, L. (eds) Smart Cities. ICSC-Cities 2023. Communications in Computer and Information Science, vol 1938. Springer, Cham. https://doi.org/10.1007/978-3-031-52517-9_11 | es |
dc.identifier.issn | 1865-0929 | es |
dc.identifier.uri | https://uvadoc.uva.es/handle/10324/66000 | |
dc.description.abstract | This work presents a Mamdani Fuzzy Logic model capable of classifying solar cells according to their energetic performance. The model has 3 different inputs: The proportion of black pixels, gray pixels, and white pixels. One additional output for informing of possible bad inputs is also provided. The three values are obtained from an Electroluminescence image of the cell. The model has been developed using cells whose performance has been obtained by measuring the Intensity-Voltage Curves of the cells. The performance of the model has been shown by testing it with a validation set, obtaining a 99.0% of accuracy, when other methods such as Ensemble Classifiers and Decision Trees obtain a 97.7%. This shows that the presented model is capable of solving the problem better than traditional Machine Learning methods. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.subject.classification | Fuzzy Logic | |
dc.subject.classification | Photovoltaic | |
dc.subject.classification | Electroluminescence | |
dc.subject.classification | Machine Learning | |
dc.title | Enhancing solar cell classification using mamdani fuzzy logic over electroluminescence images: A comparative analysis with machine learning methods | es |
dc.type | info:eu-repo/semantics/article | es |
dc.identifier.doi | 10.1007/978-3-031-52517-9_11 | es |
dc.identifier.publicationfirstpage | 159 | es |
dc.identifier.publicationlastpage | 173 | es |
dc.identifier.publicationvolume | 1938 | es |
dc.peerreviewed | SI | es |
dc.identifier.essn | 1865-0937 | es |
dc.type.hasVersion | info:eu-repo/semantics/draft | es |