Mostrar el registro sencillo del ítem

dc.contributor.authorMartínez Cagigal, Víctor
dc.contributor.authorThielen, Jordy
dc.contributor.authorSantamaría Vázquez, Eduardo
dc.contributor.authorPérez Velasco, Sergio
dc.contributor.authorDesain, Peter
dc.contributor.authorHornero, Roberto
dc.date.accessioned2024-02-08T11:40:05Z
dc.date.available2024-02-08T11:40:05Z
dc.date.issued2021-11-26
dc.identifier.citationJournal of Neural Engineering, Noviembre, 2021, vol. 18 (6), pp. 061002es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/66001
dc.description.abstractObjective. Code-modulated visual evoked potentials (c-VEP) have been consolidated in recent years as robust control signals capable of providing non-invasive brain–computer interfaces (BCIs) for reliable, high-speed communication. Their usefulness for communication and control purposes has been reflected in an exponential increase of related articles in the last decade. The aim of this review is to provide a comprehensive overview of the literature to gain understanding of the existing research on c-VEP-based BCIs, since its inception (1984) until today (2021), as well as to identify promising future research lines. Approach. The literature review was conducted according to the Preferred Reporting Items for Systematic reviews and Meta-Analysis guidelines. After assessing the eligibility of journal manuscripts, conferences, book chapters and non-indexed documents, a total of 70 studies were included. A comprehensive analysis of the main characteristics and design choices of c-VEP-based BCIs was discussed, including stimulation paradigms, signal processing, modeling responses, applications, etc. Main results. The literature review showed that state-of-the-art c-VEP-based BCIs are able to provide an accurate control of the system with a large number of commands, high selection speeds and even without calibration. In general, a lack of validation in real setups was observed, especially regarding the validation with disabled populations. Future work should be focused toward developing self-paced c-VEP-based portable BCIs applied in real-world environments that could exploit the unique benefits of c-VEP paradigms. Some aspects such as asynchrony, unsupervised training, or code optimization still require further research and development. Significance. Despite the growing popularity of c-VEP-based BCIs, to the best of our knowledge, this is the first literature review on the topic. In addition to providing a joint discussion of the advances in the field, some future lines of research are suggested to contribute to the development of reliable plug-and-play c-VEP-based BCIs.es
dc.format.mimetypeapplication/pdfes
dc.language.isospaes
dc.publisherIOPSciencees
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject.classificationVisual evoked potential (VEP)es
dc.subject.classificationCode-modulated VEP (c-VEP)es
dc.subject.classificationBrain-computer interface (BCI)es
dc.subject.classificationElectroencephalogram (EEG)es
dc.subject.classificationLiterature reviewes
dc.titleBrain–computer interfaces based on code-modulated visual evoked potentials (c-VEP): a literature reviewes
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doihttps://doi.org/10.1088/1741-2552/ac38cfes
dc.relation.publisherversionhttps://iopscience.iop.org/article/10.1088/1741-2552/ac38cfes
dc.identifier.publicationfirstpage061002es
dc.identifier.publicationissue6es
dc.identifier.publicationtitleBrain–computer interfaces based on code-modulated visual evoked potentials (c-VEP): a literature reviewes
dc.identifier.publicationvolume18es
dc.peerreviewedSIes
dc.description.projectPID2020-115468RB-I00, RTC2019-007350-1, 0702_MIGRAINEE_2_Ees
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersiones


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem