Mostrar el registro sencillo del ítem
dc.contributor.author | Shafi, Imran | |
dc.contributor.author | Fatima, Anum | |
dc.contributor.author | Afzal, Hammad | |
dc.contributor.author | Torre Díez, Isabel de la | |
dc.contributor.author | Lipari, Vivian | |
dc.contributor.author | Breñosa, Jose | |
dc.contributor.author | Ashraf, Imran | |
dc.date.accessioned | 2024-03-01T12:27:59Z | |
dc.date.available | 2024-03-01T12:27:59Z | |
dc.date.issued | 2023 | |
dc.identifier.citation | Diagnostics, 2023, Vol. 13, Nº. 13, 2196 | es |
dc.identifier.issn | 2075-4418 | es |
dc.identifier.uri | https://uvadoc.uva.es/handle/10324/66484 | |
dc.description | Producción Científica | es |
dc.description.abstract | Artificial intelligence has made substantial progress in medicine. Automated dental imaging interpretation is one of the most prolific areas of research using AI. X-ray and infrared imaging systems have enabled dental clinicians to identify dental diseases since the 1950s. However, the manual process of dental disease assessment is tedious and error-prone when diagnosed by inexperienced dentists. Thus, researchers have employed different advanced computer vision techniques, and machine- and deep-learning models for dental disease diagnoses using X-ray and near-infrared imagery. Despite the notable development of AI in dentistry, certain factors affect the performance of the proposed approaches, including limited data availability, imbalanced classes, and lack of transparency and interpretability. Hence, it is of utmost importance for the research community to formulate suitable approaches, considering the existing challenges and leveraging findings from the existing studies. Based on an extensive literature review, this survey provides a brief overview of X-ray and near-infrared imaging systems. Additionally, a comprehensive insight into challenges faced by researchers in the dental domain has been brought forth in this survey. The article further offers an amalgamative assessment of both performances and methods evaluated on public benchmarks and concludes with ethical considerations and future research avenues. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | MDPI | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | Medical informatics | es |
dc.subject | Medicina - Informática | es |
dc.subject | Dentistry | es |
dc.subject | Odontología | es |
dc.subject | Medical care | es |
dc.subject | Machine learning | es |
dc.subject | Artificial intelligence | es |
dc.subject | Image processing | es |
dc.subject | Imágenes, Tratamiento de las | es |
dc.subject | Diagnostic imaging | es |
dc.subject | Imágenes médicas | es |
dc.title | A comprehensive review of recent advances in artificial intelligence for dentistry E-health | es |
dc.type | info:eu-repo/semantics/article | es |
dc.rights.holder | © 2023 The authors | es |
dc.identifier.doi | 10.3390/diagnostics13132196 | es |
dc.relation.publisherversion | https://www.mdpi.com/2075-4418/13/13/2196 | es |
dc.identifier.publicationfirstpage | 2196 | es |
dc.identifier.publicationissue | 13 | es |
dc.identifier.publicationtitle | Diagnostics | es |
dc.identifier.publicationvolume | 13 | es |
dc.peerreviewed | SI | es |
dc.identifier.essn | 2075-4418 | es |
dc.rights | Atribución 4.0 Internacional | * |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es |
dc.subject.unesco | 1203.17 Informática | es |
dc.subject.unesco | 1203.04 Inteligencia Artificial | es |
dc.subject.unesco | 32 Ciencias Médicas | es |
dc.subject.unesco | 3212 Salud Publica | es |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
La licencia del ítem se describe como Atribución 4.0 Internacional