Mostrar el registro sencillo del ítem
dc.contributor.author | German Gorosito, Estefanía | |
dc.contributor.author | Gebauer, Ralph | |
dc.date.accessioned | 2024-03-05T08:46:47Z | |
dc.date.available | 2024-03-05T08:46:47Z | |
dc.date.issued | 2023 | |
dc.identifier.citation | Molecules, 2023, Vol. 28, Nº. 13, 5182 | es |
dc.identifier.issn | 1420-3049 | es |
dc.identifier.uri | https://uvadoc.uva.es/handle/10324/66517 | |
dc.description | Producción Científica | es |
dc.description.abstract | Density functional theory (DFT) calculations are employed to study the oxygen evolution reaction (OER) on the edges of stripes of monolayer molybdenum disulfide. Experimentally, this material has been shown to evolve oxygen, albeit with low efficiency. Previous DFT studies have traced this low catalytic performance to the unfavourable adsorption energies of some reaction intermediates on the MoS2 edge sites. In this work, we study the effects of the aqueous liquid surrounding the active sites. A computational approach is used, where the solvent is modeled as a continuous medium providing a dielectric embedding of the catalyst and the reaction intermediates. A description at this level of theory can have a profound impact on the studied reactions: the calculated overpotential for the OER is lowered from 1.15 eV to 0.77 eV. It is shown that such variations in the reaction energetics are linked to the polar nature of the adsorbed intermediates, which leads to changes in the calculated electronic charge density when surrounded by water. These results underline the necessity to computationally account for solvation effects, especially in aqueous environments and when highly polar intermediates are present. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | MDPI | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | Oxygen evolution reaction | es |
dc.subject | Water - Electrolysis | es |
dc.subject | Electrólisis | es |
dc.subject | Density functionals | es |
dc.subject | Mathematical physics | es |
dc.subject | Física matématica | es |
dc.subject | Molybdenum disulfide | es |
dc.subject | Analytical chemistry | es |
dc.title | The oxygen evolution reaction at MoS2 edge sites: The role of a solvent environment in DFT-based molecular simulations | es |
dc.type | info:eu-repo/semantics/article | es |
dc.rights.holder | © 2023 The authors | es |
dc.identifier.doi | 10.3390/molecules28135182 | es |
dc.relation.publisherversion | https://www.mdpi.com/1420-3049/28/13/5182 | es |
dc.identifier.publicationfirstpage | 5182 | es |
dc.identifier.publicationissue | 13 | es |
dc.identifier.publicationtitle | Molecules | es |
dc.identifier.publicationvolume | 28 | es |
dc.peerreviewed | SI | es |
dc.description.project | Ministerio de Ciencia e Innovación/Agencia Estatal de Investigación (AEI)/10.13039/501100011033 - (Grant PID2019- 104924RB-I00) | es |
dc.identifier.essn | 1420-3049 | es |
dc.rights | Atribución 4.0 Internacional | * |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es |
dc.subject.unesco | 22 Física | es |
dc.subject.unesco | 2301 Química Analítica | es |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
La licencia del ítem se describe como Atribución 4.0 Internacional