Mostrar el registro sencillo del ítem

dc.contributor.authorSiddiqui, Hafeez Ur Rehman
dc.contributor.authorSaleem, Adil Ali
dc.contributor.authorRaza, Muhammad Amjad
dc.contributor.authorGracia Villar, Santos
dc.contributor.authorDzul López, Luis Alonso
dc.contributor.authorTorre Díez, Isabel de la 
dc.contributor.authorRustam, Furqan
dc.contributor.authorDudley, Sandra
dc.date.accessioned2024-03-18T13:12:33Z
dc.date.available2024-03-18T13:12:33Z
dc.date.issued2023
dc.identifier.citationDiagnostics, 2023, Vol. 13, Nº. 18, 2881es
dc.identifier.issn2075-4418es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/66789
dc.descriptionProducción Científicaes
dc.description.abstractA novel approach is presented in this study for the classification of lower limb disorders, with a specific emphasis on the knee, hip, and ankle. The research employs gait analysis and the extraction of PoseNet features from video data in order to effectively identify and categorize these disorders. The PoseNet algorithm facilitates the extraction of key body joint movements and positions from videos in a non-invasive and user-friendly manner, thereby offering a comprehensive representation of lower limb movements. The features that are extracted are subsequently standardized and employed as inputs for a range of machine learning algorithms, such as Random Forest, Extra Tree Classifier, Multilayer Perceptron, Artificial Neural Networks, and Convolutional Neural Networks. The models undergo training and testing processes using a dataset consisting of 174 real patients and normal individuals collected at the Tehsil Headquarter Hospital Sadiq Abad. The evaluation of their performance is conducted through the utilization of K-fold cross-validation. The findings exhibit a notable level of accuracy and precision in the classification of various lower limb disorders. Notably, the Artificial Neural Networks model achieves the highest accuracy rate of 98.84%. The proposed methodology exhibits potential in enhancing the diagnosis and treatment planning of lower limb disorders. It presents a non-invasive and efficient method of analyzing gait patterns and identifying particular conditions.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherMDPIes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectExtremidades inferiores - Enfermedadeses
dc.subjectLeg - Diseaseses
dc.subjectLocomoción humanaes
dc.subjectMarcha (Ejercicio)es
dc.subjectBiomedical engineeringes
dc.subjectBiomechanicses
dc.subjectClinical biochemistryes
dc.subjectBioquímica clínicaes
dc.subjectMachine learninges
dc.subjectAprendizaje automáticoes
dc.subjectNeural networks (Computer science)es
dc.subjectRedes neuronales (Informática)es
dc.subjectArtificial intelligencees
dc.titleEmpowering lower limb disorder identification through PoseNet and artificial intelligencees
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2023 The authorses
dc.identifier.doi10.3390/diagnostics13182881es
dc.relation.publisherversionhttps://www.mdpi.com/2075-4418/13/18/2881es
dc.identifier.publicationfirstpage2881es
dc.identifier.publicationissue18es
dc.identifier.publicationtitleDiagnosticses
dc.identifier.publicationvolume13es
dc.peerreviewedSIes
dc.identifier.essn2075-4418es
dc.rightsAtribución 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco1203.17 Informáticaes
dc.subject.unesco1203.04 Inteligencia Artificiales
dc.subject.unesco32 Ciencias Médicases
dc.subject.unesco2406.04 Biomecánicaes


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem