Mostrar el registro sencillo del ítem
dc.contributor.author | He, Wenjie | |
dc.contributor.author | Zhu, Jianjun | |
dc.contributor.author | Lopez-Sanchez, Juan M. | |
dc.contributor.author | Gómez Almaraz, Cristina | |
dc.contributor.author | Fu, Haiqiang | |
dc.contributor.author | Xie, Qinghua | |
dc.date.accessioned | 2024-04-12T08:39:03Z | |
dc.date.available | 2024-04-12T08:39:03Z | |
dc.date.issued | 2023 | |
dc.identifier.citation | Remote Sensing, 2023, Vol. 15, Nº. 23, 5517 | es |
dc.identifier.issn | 2072-4292 | es |
dc.identifier.uri | https://uvadoc.uva.es/handle/10324/67151 | |
dc.description | Producción Científica | es |
dc.description.abstract | Forest canopy height estimation is essential for forest management and biomass estimation. In this study, we aimed to evaluate the capacity of TanDEM-X interferometric synthetic aperture radar (InSAR) data to estimate canopy height with the assistance of an external digital terrain model (DTM). A ground-to-volume ratio estimation model was proposed so that the canopy height could be precisely estimated from the random-volume-over-ground (RVoG) model. We also refined the RVoG inversion process with the relationship between the estimated penetration depth (PD) and the phase center height (PCH). The proposed method was tested by TanDEM-X InSAR data acquired over relatively homogenous coniferous forests (Teruel test site) and coniferous as well as broadleaved forests (La Rioja test site) in Spain. Comparing the TanDEM-X-derived height with the LiDAR-derived height at plots of size 50 m × 50 m, the root-mean-square error (RMSE) was 1.71 m (R2 = 0.88) in coniferous forests of Teruel and 1.97 m (R2 = 0.90) in La Rioja. To demonstrate the advantage of the proposed method, existing methods based on ignoring ground scattering contribution, fixing extinction, and assisting with simulated spaceborne LiDAR data were compared. The impacts of penetration and terrain slope on the RVoG inversion were also evaluated. The results show that when a DTM is available, the proposed method has the optimal performance on forest height estimation. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | MDPI | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | Remote sensing | es |
dc.subject | Forests and forestry - Remote sensing | es |
dc.subject | Forest canopies | es |
dc.subject | Ecología del dosel forestal | es |
dc.subject | Forests and forestry | es |
dc.subject | Synthetic aperture radar (SAR) | es |
dc.subject | Forest management | es |
dc.subject | Bosques - Gestión | es |
dc.subject.classification | TanDEM-X | es |
dc.title | Forest height inversion by combining single-baseline TanDEM-X InSAR data with external DTM data | es |
dc.type | info:eu-repo/semantics/article | es |
dc.rights.holder | © 2023 The authors | es |
dc.identifier.doi | 10.3390/rs15235517 | es |
dc.relation.publisherversion | https://www.mdpi.com/2072-4292/15/23/5517 | es |
dc.identifier.publicationfirstpage | 5517 | es |
dc.identifier.publicationissue | 23 | es |
dc.identifier.publicationtitle | Remote Sensing | es |
dc.identifier.publicationvolume | 15 | es |
dc.peerreviewed | SI | es |
dc.description.project | Fundación Nacional de Ciencias Naturales de China - (grants 41820104005, 42030112 y 41904004) | es |
dc.description.project | Fundación de Ciencias Naturales de Hunan - (Grant 2021JJ30808) | es |
dc.description.project | Ministerio de Ciencia e Innovación/Agencia Estatal de Investigación (AEI)/10.13039/501100011033 - ( Projects PID2020-117303GB-C22 y PROWARM PID2020-118444GA-I00) | es |
dc.identifier.essn | 2072-4292 | es |
dc.rights | Atribución 4.0 Internacional | * |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es |
dc.subject.unesco | 3106 Ciencia Forestal | es |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
La licencia del ítem se describe como Atribución 4.0 Internacional