Mostrar el registro sencillo del ítem

dc.contributor.authorHe, Wenjie
dc.contributor.authorZhu, Jianjun
dc.contributor.authorLopez-Sanchez, Juan M.
dc.contributor.authorGómez Almaraz, Cristina 
dc.contributor.authorFu, Haiqiang
dc.contributor.authorXie, Qinghua
dc.date.accessioned2024-04-12T08:39:03Z
dc.date.available2024-04-12T08:39:03Z
dc.date.issued2023
dc.identifier.citationRemote Sensing, 2023, Vol. 15, Nº. 23, 5517es
dc.identifier.issn2072-4292es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/67151
dc.descriptionProducción Científicaes
dc.description.abstractForest canopy height estimation is essential for forest management and biomass estimation. In this study, we aimed to evaluate the capacity of TanDEM-X interferometric synthetic aperture radar (InSAR) data to estimate canopy height with the assistance of an external digital terrain model (DTM). A ground-to-volume ratio estimation model was proposed so that the canopy height could be precisely estimated from the random-volume-over-ground (RVoG) model. We also refined the RVoG inversion process with the relationship between the estimated penetration depth (PD) and the phase center height (PCH). The proposed method was tested by TanDEM-X InSAR data acquired over relatively homogenous coniferous forests (Teruel test site) and coniferous as well as broadleaved forests (La Rioja test site) in Spain. Comparing the TanDEM-X-derived height with the LiDAR-derived height at plots of size 50 m × 50 m, the root-mean-square error (RMSE) was 1.71 m (R2 = 0.88) in coniferous forests of Teruel and 1.97 m (R2 = 0.90) in La Rioja. To demonstrate the advantage of the proposed method, existing methods based on ignoring ground scattering contribution, fixing extinction, and assisting with simulated spaceborne LiDAR data were compared. The impacts of penetration and terrain slope on the RVoG inversion were also evaluated. The results show that when a DTM is available, the proposed method has the optimal performance on forest height estimation.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherMDPIes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectRemote sensinges
dc.subjectForests and forestry - Remote sensinges
dc.subjectForest canopieses
dc.subjectEcología del dosel forestales
dc.subjectForests and forestryes
dc.subjectSynthetic aperture radar (SAR)es
dc.subjectForest managementes
dc.subjectBosques - Gestiónes
dc.subject.classificationTanDEM-Xes
dc.titleForest height inversion by combining single-baseline TanDEM-X InSAR data with external DTM dataes
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2023 The authorses
dc.identifier.doi10.3390/rs15235517es
dc.relation.publisherversionhttps://www.mdpi.com/2072-4292/15/23/5517es
dc.identifier.publicationfirstpage5517es
dc.identifier.publicationissue23es
dc.identifier.publicationtitleRemote Sensinges
dc.identifier.publicationvolume15es
dc.peerreviewedSIes
dc.description.projectFundación Nacional de Ciencias Naturales de China - (grants 41820104005, 42030112 y 41904004)es
dc.description.projectFundación de Ciencias Naturales de Hunan - (Grant 2021JJ30808)es
dc.description.projectMinisterio de Ciencia e Innovación/Agencia Estatal de Investigación (AEI)/10.13039/501100011033 - ( Projects PID2020-117303GB-C22 y PROWARM PID2020-118444GA-I00)es
dc.identifier.essn2072-4292es
dc.rightsAtribución 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco3106 Ciencia Forestales


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem