Mostrar el registro sencillo del ítem
dc.contributor.author | Sanchez Rodriguez, Laura | |
dc.contributor.author | Galvez Fernandez, Marta | |
dc.contributor.author | Rojas Benedicto, Ayelén | |
dc.contributor.author | Domingo Relloso, Arce | |
dc.contributor.author | Amigo, Nuria | |
dc.contributor.author | Redon, Josep | |
dc.contributor.author | Monleon Salvado, Daniel | |
dc.contributor.author | Saez Tormo, Guillermo | |
dc.contributor.author | Tellez Plaza, Maria | |
dc.contributor.author | Martín Escudero, Juan Carlos | |
dc.contributor.author | Ramis, Rebeca | |
dc.date.accessioned | 2024-04-16T07:37:05Z | |
dc.date.available | 2024-04-16T07:37:05Z | |
dc.date.issued | 2023 | |
dc.identifier.citation | Antioxidants, 2023, Vol. 12, Nº. 12, 2122 | es |
dc.identifier.issn | 2076-3921 | es |
dc.identifier.uri | https://uvadoc.uva.es/handle/10324/67178 | |
dc.description | Producción Científica | es |
dc.description.abstract | Exposure to traffic-related air pollution (TRAP) generates oxidative stress, with downstream effects at the metabolic level. Human studies of traffic density and metabolomic markers, however, are rare. The main objective of this study was to evaluate the cross-sectional association between traffic density in the street of residence with oxidative stress and metabolomic profiles measured in a population-based sample from Spain. We also explored in silico the potential biological implications of the findings. Secondarily, we assessed the contribution of oxidative stress to the association between exposure to traffic density and variation in plasma metabolite levels. Traffic density was defined as the average daily traffic volume over an entire year within a buffer of 50 m around the participants’ residence. Plasma metabolomic profiles and urine oxidative stress biomarkers were measured in samples from 1181 Hortega Study participants by nuclear magnetic resonance spectroscopy and high-performance liquid chromatography, respectively. Traffic density was associated with 7 (out of 49) plasma metabolites, including amino acids, fatty acids, products of bacterial and energy metabolism and fluid balance metabolites. Regarding urine oxidative stress biomarkers, traffic associations were positive for GSSG/GSH% and negative for MDA. A total of 12 KEGG pathways were linked to traffic-related metabolites. In a protein network from genes included in over-represented pathways and 63 redox-related candidate genes, we observed relevant proteins from the glutathione cycle. GSSG/GSH% and MDA accounted for 14.6% and 12.2% of changes in isobutyrate and the CH2CH2CO fatty acid moiety, respectively, which is attributable to traffic exposure. At the population level, exposure to traffic density was associated with specific urine oxidative stress and plasma metabolites. Although our results support a role of oxidative stress as a biological intermediary of traffic-related metabolic alterations, with potential implications for the co-bacterial and lipid metabolism, additional mechanistic and prospective studies are needed to confirm our findings. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | MDPI | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | Traffic density | es |
dc.subject | Tráfico | es |
dc.subject | Metabolomics | es |
dc.subject | Air - Pollution | es |
dc.subject | Aire - Contaminacion | es |
dc.subject | Oxidative stress | es |
dc.subject | Estrés oxidativo | es |
dc.subject | Metabolites | es |
dc.subject | Aire - Contaminación - España | es |
dc.subject | Public health | |
dc.title | Traffic density exposure, oxidative stress biomarkers and plasma metabolomics in a population-based sample: The Hortega study | es |
dc.type | info:eu-repo/semantics/article | es |
dc.rights.holder | © 2023 The authors | es |
dc.identifier.doi | 10.3390/antiox12122122 | es |
dc.relation.publisherversion | https://www.mdpi.com/2076-3921/12/12/2122 | es |
dc.identifier.publicationfirstpage | 2122 | es |
dc.identifier.publicationissue | 12 | es |
dc.identifier.publicationtitle | Antioxidants | es |
dc.identifier.publicationvolume | 12 | es |
dc.peerreviewed | SI | es |
dc.description.project | Ministerio de Ciencia e Innovación de España, Agencia Española de Investigación (AEI) - (projects PID2019-108973RB-C21 and C22) | es |
dc.description.project | Ministerio de Economía y Competitividad y Fondo Europeo de Desarrollo Regional (FEDER) - (projects PI15/00071 y PI22CIII/00029) ) | es |
dc.description.project | Generalitat Valenciana - (grants IDIFEDER/2021/072, CIAICO/2022/181 and INVEST/2023/180) | es |
dc.identifier.essn | 2076-3921 | es |
dc.rights | Atribución 4.0 Internacional | * |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es |
dc.subject.unesco | 2509.02 Contaminación Atmosférica | es |
dc.subject.unesco | 32 Ciencias Médicas | |
dc.subject.unesco | 3212 Salud Publica |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
La licencia del ítem se describe como Atribución 4.0 Internacional