Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/67207
Título
Comparison of Methodologies for the Detection of Multiple Failures Using Acoustic Images in Fan Matrices
Año del Documento
2020
Editorial
Hindawi
Documento Fuente
Lara del Val, Alberto Izquierdo, Juan J. Villacorta, Luis Suárez, "Comparison of Methodologies for the Detection of Multiple Failures Using Acoustic Images in Fan Matrices", Shock and Vibration, vol. 2020, Article ID 5816050, 10 pages, 2020. https://doi.org/10.1155/2020/5816050
Résumé
This paper presents the comparison of three methodologies to detect if some fans in a matrix are not working properly. These methodologies are based on detecting fan failures by analysing acoustic images of the fan matrix, obtained using a planar array of MEMS microphones. Geometrical parameters of these acoustic images for different frequencies are then used to train a support vector machine (SVM) classifier, in order to detect the fan failures. One of the methodologies is based on the detection of the faulty fan in the matrix, under the hypothesis that only one fan can fail. Other methodology is based on the detection of the specific working situation of the matrix. And finally, the third methodology that is compared is based on determining individually if each of the fans of the matrix is working properly or not. The comparison shows that this third methodology is the most reliable
ISSN
1070-9622
Revisión por pares
SI
Idioma
spa
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Fichier(s) constituant ce document
Tamaño:
4.981Mo
Formato:
Adobe PDF
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Attribution-NonCommercial-NoDerivs 3.0 Unported