Mostrar el registro sencillo del ítem

dc.contributor.authorQuintano Pastor, María del Carmen 
dc.contributor.authorFernández Manso, Alfonso
dc.contributor.authorFernández Guisuraga, José Manuel
dc.contributor.authorRoberts, Dar A.
dc.date.accessioned2024-04-29T08:52:23Z
dc.date.available2024-04-29T08:52:23Z
dc.date.issued2024
dc.identifier.citationRemote Sensing, 2024, Vol. 16, Nº. 2, 361es
dc.identifier.issn2072-4292es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/67290
dc.descriptionProducción Científicaes
dc.description.abstractWildfires represent a significant threat to both ecosystems and human assets in Mediterranean countries, where fire occurrence is frequent and often devastating. Accurate assessments of the initial fire severity are required for management and mitigation efforts of the negative impacts of fire. Evapotranspiration (ET) is a crucial hydrological process that links vegetation health and water availability, making it a valuable indicator for understanding fire dynamics and ecosystem recovery after wildfires. This study uses the Mapping Evapotranspiration at High Resolution with Internalized Calibration (eeMETRIC) and Operational Simplified Surface Energy Balance (SSEBop) ET models based on Landsat imagery to estimate fire severity in five large forest fires that occurred in Spain and Portugal in 2022 from two perspectives: uni- and bi-temporal (post/pre-fire ratio). Using-fine-spatial resolution ET is particularly relevant for heterogeneous Mediterranean landscapes with different vegetation types and water availability. ET was significantly affected by fire severity according to eeMETRIC (F > 431.35; p-value < 0.001) and SSEBop (F > 373.83; p-value < 0.001) metrics, with reductions of 61.46% and 63.92%, respectively, after the wildfire event. A Random Forest machine learning algorithm was used to predict fire severity. We achieved higher accuracy (0.60 < Kappa < 0.67) when employing both ET models (eeMETRIC and SSEBop) as predictors compared to utilizing the conventional differenced Normalized Burn Ratio (dNBR) index, which resulted in a Kappa value of 0.46. We conclude that both fine resolution ET models are valid to be used as indicators of fire severity in Mediterranean countries. This research highlights the importance of Landsat-based ET models as accurate tools to improve the initial analysis of fire severity in Mediterranean countries.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherMDPIes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectEvapotranspirationes
dc.subjectEvaporaciónes
dc.subjectMeteorologyes
dc.subjectClimatologyes
dc.subjectFire severityes
dc.subjectForest fireses
dc.subjectIncendio forestales
dc.subjectMediterranean Regiones
dc.subjectMediterráneo, Región del - Climaes
dc.subjectForests and forestryes
dc.subjectBosques - Incendios - Mediterráneo, Región deles
dc.subjectLandsat satelliteses
dc.subjectSatelites artificialeses
dc.subjectRemote sensinges
dc.subjectTeledetecciónes
dc.titleImproving fire severity analysis in Mediterranean environments: A comparative study of eeMETRIC and SSEBop Landsat-based evapotranspiration modelses
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2024 The authorses
dc.identifier.doi10.3390/rs16020361es
dc.relation.publisherversionhttps://www.mdpi.com/2072-4292/16/2/361es
dc.identifier.publicationfirstpage361es
dc.identifier.publicationissue2es
dc.identifier.publicationtitleRemote Sensinges
dc.identifier.publicationvolume16es
dc.peerreviewedSIes
dc.description.projectMinisterio de Ciencia e Innovación - (LANDSUSFIRE project PID2022-139156OB-C21)es
dc.description.projectJunta de Castilla y León - (WUIFIRECYL project LE005P20)es
dc.description.projectFundación Portuguesa para la Ciencia y la Tecnología (FCT) - ( project UIDB/04033/2020)es
dc.description.projectMinisterio de Educación, Formación Profesional y Deportes, Programa Salvador de Madariaga - (grants PRX22/00305 and PRX22/00307)es
dc.identifier.essn2072-4292es
dc.rightsAtribución 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco2502 Climatologíaes
dc.subject.unesco2509 Meteorologíaes
dc.subject.unesco3106 Ciencia Forestales
dc.subject.unescotelees


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem