Mostrar el registro sencillo del ítem
dc.contributor.author | Quintano Pastor, María del Carmen | |
dc.contributor.author | Fernández Manso, Alfonso | |
dc.contributor.author | Fernández Guisuraga, José Manuel | |
dc.contributor.author | Roberts, Dar A. | |
dc.date.accessioned | 2024-04-29T08:52:23Z | |
dc.date.available | 2024-04-29T08:52:23Z | |
dc.date.issued | 2024 | |
dc.identifier.citation | Remote Sensing, 2024, Vol. 16, Nº. 2, 361 | es |
dc.identifier.issn | 2072-4292 | es |
dc.identifier.uri | https://uvadoc.uva.es/handle/10324/67290 | |
dc.description | Producción Científica | es |
dc.description.abstract | Wildfires represent a significant threat to both ecosystems and human assets in Mediterranean countries, where fire occurrence is frequent and often devastating. Accurate assessments of the initial fire severity are required for management and mitigation efforts of the negative impacts of fire. Evapotranspiration (ET) is a crucial hydrological process that links vegetation health and water availability, making it a valuable indicator for understanding fire dynamics and ecosystem recovery after wildfires. This study uses the Mapping Evapotranspiration at High Resolution with Internalized Calibration (eeMETRIC) and Operational Simplified Surface Energy Balance (SSEBop) ET models based on Landsat imagery to estimate fire severity in five large forest fires that occurred in Spain and Portugal in 2022 from two perspectives: uni- and bi-temporal (post/pre-fire ratio). Using-fine-spatial resolution ET is particularly relevant for heterogeneous Mediterranean landscapes with different vegetation types and water availability. ET was significantly affected by fire severity according to eeMETRIC (F > 431.35; p-value < 0.001) and SSEBop (F > 373.83; p-value < 0.001) metrics, with reductions of 61.46% and 63.92%, respectively, after the wildfire event. A Random Forest machine learning algorithm was used to predict fire severity. We achieved higher accuracy (0.60 < Kappa < 0.67) when employing both ET models (eeMETRIC and SSEBop) as predictors compared to utilizing the conventional differenced Normalized Burn Ratio (dNBR) index, which resulted in a Kappa value of 0.46. We conclude that both fine resolution ET models are valid to be used as indicators of fire severity in Mediterranean countries. This research highlights the importance of Landsat-based ET models as accurate tools to improve the initial analysis of fire severity in Mediterranean countries. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | MDPI | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | Evapotranspiration | es |
dc.subject | Evaporación | es |
dc.subject | Meteorology | es |
dc.subject | Climatology | es |
dc.subject | Fire severity | es |
dc.subject | Forest fires | es |
dc.subject | Incendio forestal | es |
dc.subject | Mediterranean Region | es |
dc.subject | Mediterráneo, Región del - Clima | es |
dc.subject | Forests and forestry | es |
dc.subject | Bosques - Incendios - Mediterráneo, Región del | es |
dc.subject | Landsat satellites | es |
dc.subject | Satelites artificiales | es |
dc.subject | Remote sensing | es |
dc.subject | Teledetección | es |
dc.title | Improving fire severity analysis in Mediterranean environments: A comparative study of eeMETRIC and SSEBop Landsat-based evapotranspiration models | es |
dc.type | info:eu-repo/semantics/article | es |
dc.rights.holder | © 2024 The authors | es |
dc.identifier.doi | 10.3390/rs16020361 | es |
dc.relation.publisherversion | https://www.mdpi.com/2072-4292/16/2/361 | es |
dc.identifier.publicationfirstpage | 361 | es |
dc.identifier.publicationissue | 2 | es |
dc.identifier.publicationtitle | Remote Sensing | es |
dc.identifier.publicationvolume | 16 | es |
dc.peerreviewed | SI | es |
dc.description.project | Ministerio de Ciencia e Innovación - (LANDSUSFIRE project PID2022-139156OB-C21) | es |
dc.description.project | Junta de Castilla y León - (WUIFIRECYL project LE005P20) | es |
dc.description.project | Fundación Portuguesa para la Ciencia y la Tecnología (FCT) - ( project UIDB/04033/2020) | es |
dc.description.project | Ministerio de Educación, Formación Profesional y Deportes, Programa Salvador de Madariaga - (grants PRX22/00305 and PRX22/00307) | es |
dc.identifier.essn | 2072-4292 | es |
dc.rights | Atribución 4.0 Internacional | * |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es |
dc.subject.unesco | 2502 Climatología | es |
dc.subject.unesco | 2509 Meteorología | es |
dc.subject.unesco | 3106 Ciencia Forestal | es |
dc.subject.unesco | tele | es |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
La licencia del ítem se describe como Atribución 4.0 Internacional